Suppr超能文献

压力驱动的 DNA 变性中的滞后现象。

Hysteresis in pressure-driven DNA denaturation.

机构信息

Computational Genomics Department, National Institute of Genomic Medicine, México, DF, México.

出版信息

PLoS One. 2012;7(4):e33789. doi: 10.1371/journal.pone.0033789. Epub 2012 Apr 9.

Abstract

In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.

摘要

过去,人们对热驱动的变性过程给予了大量关注。然而,近年来,在单分子水平上观察到的应激诱导变性的发现,揭示了在 DNA 功能的热力学中涉及的复杂现象的新见解。因此,理解局部压力变化对 DNA 稳定性的影响是一个吸引人的话题。细胞应激、脱水和介质离子强度的变化等过程可以解释影响 DNA 分子力学及其稳定性的局部压力变化。在这项工作中,提出了一种解释压力驱动 DNA 变性滞后的理论。我们在这里将不可逆热力学方法与基于泊松-玻尔兹曼单元模型的状态方程相结合。后者可以很好地描述在广泛的 DNA 浓度范围内的渗透压。所得理论框架通常可以预测 DNA 序列的变性过程,特别是滞后曲线,其取决于系统参数,如盐浓度、DNA 分子密度和温度,以及 DNA 的结构和构象状态。此外,这种形式主义可以自然地扩展到更复杂的情况,例如,在主体介质由不对称盐组成的情况下,或者在描述 DNA 分子上的(类似螺旋)电荷分布的情况下。此外,由于这项研究通过热力学分析纳入了压力的影响,因此从温度驱动实验中获得的许多知识将阐明压力诱导的熔化问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1abb/3322130/94a07ade21d8/pone.0033789.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验