Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
J Phys Condens Matter. 2010 Oct 20;22(41):415501. doi: 10.1088/0953-8984/22/41/415501. Epub 2010 Sep 23.
Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (T(d)) site. The diffusion of a Li atom in the Si lattice is through a T(d)-Hex-T(d) trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a Li(x)Si alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration.
硅是下一代锂离子电池的重要阳极材料。在此,基于第一性原理计算,研究了不同锂浓度下体硅中锂原子的能量和动力学。结果表明,锂倾向于占据间隙位置,作为浅施主,而不是替代位置。最稳定的位置是四面体(T(d))位置。锂原子在硅晶格中的扩散是通过 T(d)-Hex-T(d)轨迹进行的,其中 Hex 位置是具有 0.58eV 能垒的六方过渡位置。我们还系统地研究了锂(x)硅合金的局部结构转变,其中 x 从 0 变化到 0.25。在低掺杂浓度(x=0-0.125)下,锂原子倾向于彼此分离,导致均匀掺杂分布。从 x=0.125 开始,锂原子倾向于由于晶格变形而形成团簇,硅-硅键频繁断裂和重组。当 x≥0.1875 时,锂原子将永久地破坏一些硅-硅键,导致悬键。这些悬键会产生带负电荷的区域,这是高掺杂浓度下锂原子团聚的主要驱动力。