Alonso-Sánchez Pedro, Hua Weicheng, Thangaian Kesavan, Vullum Per Erik, Karlsen Jon Tobias Aga, Svensson Ann Mari, Vullum-Bruer Fride, Campo Javier, Cova Federico, Blanco Maria Valeria
Aragon Nanoscience and Materials Institute (CSIC - University of Zaragoza), C/ Pedro Cerbuna 12, Zaragoza, 50009, Spain.
Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway.
Small. 2025 Sep;21(35):e2504704. doi: 10.1002/smll.202504704. Epub 2025 Jul 28.
Silicon-Graphite (SiGr) blended anodes represent a promising approach for enhancing the energy density of commercial Li-ion batteries (LIBs). However, the ≈300% volume change of the silicon component during lithiation and delithiation induces significant mechanical stress, leading to particle cracking and pulverization that compromise electrode stability. This study presents the first evidence of controlled Si lithiation in Si-rich blended anodes, where a crystalline silicon (c-Si) core remains unreacted while the outer shell undergoes complete amorphization. Operando synchrotron X-ray diffraction analysis of SiGr anodes over five consecutive cycles reveals a reversible lithiation of c-Si, which was not previously reported. Complementary transmission electron microscopy (TEM) analysis of focused ion beam (FIB)-prepared lamellae from cycled electrodes confirms the formation of an amorphous shell and preservation of the c-Si core. These findings validate the feasibility of a partial lithiation strategy for SiGr anodes and provide unprecedented insights for the design of mechanically stable electrodes. Additionally, the interpretation of lithiation/delithiation differential capacity plots is discussed in light of the observed structural evolution, offering both fundamental and practical advancements for the development of robust SiGr anodes for high-energy-density LIBs.
硅石墨(SiGr)复合阳极是提高商用锂离子电池(LIB)能量密度的一种很有前景的方法。然而,硅成分在锂化和脱锂过程中约300%的体积变化会产生显著的机械应力,导致颗粒破裂和粉碎,从而损害电极稳定性。本研究首次证明了在富硅复合阳极中对硅锂化的可控性,其中结晶硅(c-Si)核心保持未反应状态,而外壳则完全非晶化。对SiGr阳极连续五个循环进行的同步辐射X射线衍射分析揭示了c-Si的可逆锂化,这是此前未报道过的。对循环电极经聚焦离子束(FIB)制备的薄片进行的补充透射电子显微镜(TEM)分析证实了非晶壳的形成和c-Si核心的保留。这些发现验证了SiGr阳极部分锂化策略的可行性,并为机械稳定电极的设计提供了前所未有的见解。此外,根据观察到的结构演变,讨论了锂化/脱锂微分容量图的解释,为开发用于高能量密度LIB的坚固SiGr阳极提供了基础和实际进展。