Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, D-81377 München, Germany.
J Am Chem Soc. 2011 Mar 30;133(12):4307-15. doi: 10.1021/ja106459e. Epub 2011 Mar 9.
High-pressure synthesis allows both fundamental and materials science research to gain unprecedented insight into the inner nature of materials properties at extreme environment conditions. Here, we report on the high-pressure synthesis and characterization of γ-Ca(3)N(2) and the high-pressure behavior of Mg(3)N(2). Investigation of M(3)N(2) (M = Ca, Mg) at high-pressure has been quite challenging due to the high reactivity of these compounds. Ex situ experiments have been performed using a multianvil press at pressures from 8 to 18 GPa (1000-1200 °C). Additional in situ experiments from 0 to 6 GPa (at RT) at the multianvil press MAX 80 (HASYLAB, Beamline F.2.1, Hamburg) have been carried out. The new cubic high-pressure phase γ-Ca(3)N(2) with anti-Th(3)P(4) defect structure exhibits a significant increase in coordination numbers compared to α-Ca(3)N(2). Contrary, Mg(3)N(2) shows decomposition starting at surprisingly low pressures, thereby acting as a precursor for Mg nanoparticle formation with bcc structure. Soft X-ray spectroscopy in conjunction with first principles DFT calculations have been used to explore the electronic structure and show that γ-Ca(3)N(2) is a semiconductor with inherent nitrogen vacancies.
高压合成使基础科学和材料科学研究能够在极端环境条件下前所未有地深入了解材料性质的内在本质。在这里,我们报告了γ-Ca(3)N(2)的高压合成和表征,以及 Mg(3)N(2)的高压行为。由于这些化合物的高反应性,研究 M(3)N(2) (M = Ca, Mg) 在高压下的性质极具挑战性。使用多砧压机在 8 至 18 GPa(1000-1200°C)的压力下进行了原位实验。在多砧压机 MAX 80(HASYLAB,光束线 F.2.1,汉堡)上还进行了从 0 到 6 GPa(在 RT 下)的额外原位实验。新的立方高压相γ-Ca(3)N(2)具有反-Th(3)P(4)缺陷结构,与α-Ca(3)N(2)相比,配位数显著增加。相反,Mg(3)N(2)在压力低至令人惊讶的水平时开始分解,从而作为形成具有 bcc 结构的 Mg 纳米颗粒的前体。软 X 射线光谱学与第一性原理 DFT 计算相结合,用于研究电子结构,并表明γ-Ca(3)N(2)是一种具有固有氮空位的半导体。