Suppr超能文献

在生物和非生物胁迫条件下对向日葵中超氧化物歧化酶(SODs)的功能分析。鉴定出两种新的线粒体 Mn-SOD 基因。

Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD.

机构信息

Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Jaén, Spain.

出版信息

J Plant Physiol. 2011 Jul 15;168(11):1303-8. doi: 10.1016/j.jplph.2011.01.020. Epub 2011 Mar 9.

Abstract

Superoxide dismutases (SODs) are a family of metalloenzymes that catalyse the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. In sunflower (Helianthus annuus L.) seedlings, two new Mn-SOD isozymes, designated as I and II, were identified. However, no evidence for a Fe-SOD was found. Both Mn-SOD I and Mn-SOD II have a cleaved sequence of 14 residues that target the mitochondrion with a probability of 81% and 95%, respectively. The gene expression of these new mitochondrial Mn-SODs as well as the previously reported cytosolic and chloroplastic CuZnSODs was analyzed by real-time quantitative reverse transcription-PCR. This was done in the main organs (roots, hypocotyls, and cotyledons) of sunflower seedlings and also under biotic (infection by the pathogen Plasmopara halstedii) and abiotic stress conditions, including high and low temperature and mechanical wounding. Both CuZn-SODs had a gene expression of 1000-fold higher than that of mitochondrial Mn-SODs. And the expression of the Mn-SOD I was approximately 12-fold higher than that of Mn-SOD II. The Mn-SOD I showed a significant modulation in response to the assayed biotic and abiotic stresses even when it had no apparent oxidative stress, such as low temperature. Thus, it is proposed that the mitochondrial Mn-SOD I gene could act as an early sensor of adverse conditions to prevent potential oxidative damage.

摘要

超氧化物歧化酶(SODs)是一类金属酶,可催化超氧自由基歧化为过氧化氢和氧气。在向日葵(Helianthus annuus L.)幼苗中,鉴定出两种新的 Mn-SOD 同工酶,分别命名为 I 和 II。然而,没有发现 Fe-SOD 的证据。Mn-SOD I 和 Mn-SOD II 都有一段 14 个残基的切割序列,分别靶向线粒体的概率为 81%和 95%。通过实时定量反转录-PCR 分析了这些新的线粒体 Mn-SOD 以及先前报道的细胞质和叶绿体 CuZnSOD 的基因表达。这是在向日葵幼苗的主要器官(根、下胚轴和子叶)中进行的,也在生物(由病原体 Plasmopara halstedii 感染)和非生物胁迫条件下进行,包括高温和低温以及机械损伤。CuZn-SOD 的基因表达比线粒体 Mn-SOD 高 1000 倍。Mn-SOD I 的表达比 Mn-SOD II 高约 12 倍。Mn-SOD I 对所测试的生物和非生物胁迫有明显的调节作用,即使在没有明显氧化应激的情况下,如低温。因此,有人提出,线粒体 Mn-SOD I 基因可以作为对不利条件的早期传感器,以防止潜在的氧化损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验