Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
J Biol Chem. 2011 Apr 29;286(17):15403-12. doi: 10.1074/jbc.M110.204933. Epub 2011 Mar 9.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.
GTP 结合形式的 Ras 家族小 GTP 酶表现出两种可相互转化构象之间的动态平衡,即“非活性”状态 1 和“活性”状态 2。它们的状态分布存在很大差异;H-Ras 主要采用状态 2,而 M-Ras 则主要采用状态 1。我们以前的研究基于代表状态 1 和状态 2 的晶体结构比较,揭示了两个柔性效应物相互作用区域,即开关 I 和开关 II 与 GTP 的 γ-磷酸之间氢键相互作用的重要性,以建立状态 2 构象。然而,由于未能从单个蛋白质中获得两种状态结构,进一步分析状态转换机制的工作受阻。在这里,我们成功地从单个 Ras 多肽 M-RasD41E 中解决了对应于状态 1 和状态 2 的两个晶体结构,该多肽在紧邻开关 I 的第 41 位携带一个 H-Ras 型取代物,与鸟苷 5'-(β,γ-亚氨基)三磷酸复合物。这两个结构与其他 H-Ras/M-Ras 的状态 1 和状态 2 结构的比较揭示了两个新的结构特征,它们在状态动力学中起着关键作用;残基 31/41(H-Ras/M-Ras)与残基 29/39 和 30/40 的相互作用,诱导开关 I 的构象变化,有利于其与 γ-磷酸的相互作用,以及开关 II 与相邻α-螺旋,α3-螺旋的氢键相互作用,诱导开关 II 的构象变化,有利于其与 γ-磷酸的相互作用。通过对参与氢键的残基进行突变分析,证明了后一种相互作用的重要性。这些结果定义了在状态转换过程中起关键作用的两个新的功能区域。