Suppr超能文献

酸敏离子通道 1a 的孔道开放机制研究进展。

Insights into the mechanism of pore opening of acid-sensing ion channel 1a.

机构信息

Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Biol Chem. 2011 May 6;286(18):16297-307. doi: 10.1074/jbc.M110.202366. Epub 2011 Mar 9.

Abstract

Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.

摘要

酸敏离子通道(ASICs)是三聚体阳离子通道,可在外酸化时发生激活和脱敏。将细胞外区域中的质子结合与孔门控偶联的潜在机制尚不清楚。在这里,我们研究了 ASIC1a 孔外腔中带有半胱氨酸取代残基的通道对甲硫磺酸酯(MTS)试剂的反应性。我们发现带正电荷的 MTS 试剂触发 G428C 孔的打开。在第二个跨膜结构域之前的区域中对残基进行扫描诱变表明,位置 428 的 Cys 的 MTSET 修饰侧链与 Tyr-424 相互作用。双突变体循环分析证实了这一相互作用。引人注目的是,Y424C-G428C 单体通过亚基间二硫键相互关联,并且对 MTSET 不敏感。尽管这些亚基间二硫键在孔的外腔中引入了空间限制,但 Y424C-G428C 仍可响应细胞外酸化在静息、开放和脱敏状态之间转换。这一发现表明,离子传导途径的打开涉及到第二个跨膜结构域的协调旋转。

相似文献

1
Insights into the mechanism of pore opening of acid-sensing ion channel 1a.
J Biol Chem. 2011 May 6;286(18):16297-307. doi: 10.1074/jbc.M110.202366. Epub 2011 Mar 9.
2
Conformational changes associated with proton-dependent gating of ASIC1a.
J Biol Chem. 2009 Dec 25;284(52):36473-36481. doi: 10.1074/jbc.M109.055418. Epub 2009 Oct 26.
3
Contribution of residues in second transmembrane domain of ASIC1a protein to ion selectivity.
J Biol Chem. 2012 Apr 13;287(16):12927-34. doi: 10.1074/jbc.M111.329284. Epub 2012 Feb 27.
4
A gating mutation in the internal pore of ASIC1a.
J Biol Chem. 2006 Apr 28;281(17):11787-91. doi: 10.1074/jbc.M513692200. Epub 2006 Feb 23.
5
Gating transitions in the palm domain of ASIC1a.
J Biol Chem. 2013 Feb 22;288(8):5487-95. doi: 10.1074/jbc.M112.441964. Epub 2013 Jan 8.
6
The interaction between two extracellular linker regions controls sustained opening of acid-sensing ion channel 1.
J Biol Chem. 2011 Jul 8;286(27):24374-84. doi: 10.1074/jbc.M111.230797. Epub 2011 May 16.
7
Exploration of the pore structure of a peptide-gated Na+ channel.
EMBO J. 2001 Oct 15;20(20):5595-602. doi: 10.1093/emboj/20.20.5595.
8
The contact region between three domains of the extracellular loop of ASIC1a is critical for channel function.
J Biol Chem. 2010 Apr 30;285(18):13816-26. doi: 10.1074/jbc.M109.086843. Epub 2010 Mar 9.
9
Two residues in the extracellular domain convert a nonfunctional ASIC1 into a proton-activated channel.
Am J Physiol Cell Physiol. 2010 Jul;299(1):C66-73. doi: 10.1152/ajpcell.00100.2010. Epub 2010 Apr 28.

引用本文的文献

1
Pathology and physiology of acid-sensitive ion channels in the bladder.
Heliyon. 2024 Sep 17;10(18):e38031. doi: 10.1016/j.heliyon.2024.e38031. eCollection 2024 Sep 30.
2
Epithelial Na Channels Function as Extracellular Sensors.
Compr Physiol. 2024 Mar 29;14(2):1-41. doi: 10.1002/cphy.c230015.
3
Probing conformational changes during activation of ASIC1a by an optical tweezer and by methanethiosulfonate-based cross-linkers.
PLoS One. 2022 Jul 8;17(7):e0270762. doi: 10.1371/journal.pone.0270762. eCollection 2022.
4
Evolutionarily Conserved Interactions within the Pore Domain of Acid-Sensing Ion Channels.
Biophys J. 2020 Feb 25;118(4):861-872. doi: 10.1016/j.bpj.2019.09.001. Epub 2019 Sep 6.
5
Molecular basis of inhibition of acid sensing ion channel 1A by diminazene.
PLoS One. 2018 May 21;13(5):e0196894. doi: 10.1371/journal.pone.0196894. eCollection 2018.
6
ASIC3 fine-tunes bladder sensory signaling.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F870-F879. doi: 10.1152/ajprenal.00630.2017. Epub 2018 Mar 21.
7
Proton and non-proton activation of ASIC channels.
PLoS One. 2017 Apr 6;12(4):e0175293. doi: 10.1371/journal.pone.0175293. eCollection 2017.
9
The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.
J Biol Chem. 2016 May 20;291(21):11407-19. doi: 10.1074/jbc.M115.702316. Epub 2016 Mar 25.

本文引用的文献

1
Asn415 in the beta11-beta12 linker decreases proton-dependent desensitization of ASIC1.
J Biol Chem. 2010 Oct 8;285(41):31285-91. doi: 10.1074/jbc.M110.160382. Epub 2010 Jul 30.
2
Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a).
J Biol Chem. 2010 Jun 4;285(23):17425-31. doi: 10.1074/jbc.M109.091561. Epub 2010 Apr 12.
3
A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a.
J Biol Chem. 2010 May 21;285(21):16315-29. doi: 10.1074/jbc.M109.092015. Epub 2010 Mar 18.
4
Conformational changes associated with proton-dependent gating of ASIC1a.
J Biol Chem. 2009 Dec 25;284(52):36473-36481. doi: 10.1074/jbc.M109.055418. Epub 2009 Oct 26.
5
Acid-sensing ion channels: A new target for pain and CNS diseases.
Curr Opin Drug Discov Devel. 2009 Sep;12(5):693-704.
6
Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.
Nature. 2009 Jul 30;460(7255):599-604. doi: 10.1038/nature08218.
7
Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism.
PLoS Biol. 2009 Jul;7(7):e1000151. doi: 10.1371/journal.pbio.1000151. Epub 2009 Jul 14.
8
Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3573-8. doi: 10.1073/pnas.0813402106. Epub 2009 Feb 13.
10
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验