National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
Biol Lett. 2011 Aug 23;7(4):547-50. doi: 10.1098/rsbl.2011.0057. Epub 2011 Mar 9.
Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey.
肉食植物的运动速度可与动物猎物相媲美,因此为我们深入了解植物快速运动的进化提供了有趣的线索。在这里,我们描述了水生狸藻 Utricularia stellaris 捕捉游泳昆虫幼虫或线虫等猎物的机制,以补充其氮的摄入。关闭的狸藻膀胱通过从膀胱中抽出水分来产生低于环境压力的内部压力,从而在膀胱壁上建立弹性不稳定性。当它们的活门外部感觉触发毛被移动的猎物机械刺激时,活门在 300-700 μs 内打开,导致强烈的向内流动,从而困住猎物。膀胱活门的打开时间比肉食植物中任何已记录的运动都要快。因此,狸藻已经进化出一种独特的生物力学系统,以获得相对于其动物猎物的优势。