Suppr超能文献

水鳖中快速捕获猎物的生物力学。

The biomechanics of fast prey capture in aquatic bladderworts.

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.

出版信息

Biol Lett. 2011 Aug 23;7(4):547-50. doi: 10.1098/rsbl.2011.0057. Epub 2011 Mar 9.

Abstract

Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey.

摘要

肉食植物的运动速度可与动物猎物相媲美,因此为我们深入了解植物快速运动的进化提供了有趣的线索。在这里,我们描述了水生狸藻 Utricularia stellaris 捕捉游泳昆虫幼虫或线虫等猎物的机制,以补充其氮的摄入。关闭的狸藻膀胱通过从膀胱中抽出水分来产生低于环境压力的内部压力,从而在膀胱壁上建立弹性不稳定性。当它们的活门外部感觉触发毛被移动的猎物机械刺激时,活门在 300-700 μs 内打开,导致强烈的向内流动,从而困住猎物。膀胱活门的打开时间比肉食植物中任何已记录的运动都要快。因此,狸藻已经进化出一种独特的生物力学系统,以获得相对于其动物猎物的优势。

相似文献

1
The biomechanics of fast prey capture in aquatic bladderworts.水鳖中快速捕获猎物的生物力学。
Biol Lett. 2011 Aug 23;7(4):547-50. doi: 10.1098/rsbl.2011.0057. Epub 2011 Mar 9.
2
Carnivorous Utricularia: the buckling scenario.肉食性狸藻:卷曲的情形。
Plant Signal Behav. 2011 Nov;6(11):1752-4. doi: 10.4161/psb.6.11.17804. Epub 2011 Nov 1.
9
A dynamical model for the Utricularia trap.狸藻陷阱的动力学模型。
J R Soc Interface. 2012 Nov 7;9(76):3129-39. doi: 10.1098/rsif.2012.0512. Epub 2012 Aug 1.
10
Fluorescent prey traps in carnivorous plants.食虫植物中的荧光诱饵
Plant Biol (Stuttg). 2013 May;15(3):611-5. doi: 10.1111/j.1438-8677.2012.00709.x.

引用本文的文献

7
Effect of Gravity on the Scale of Compliant Shells.重力对柔性壳体尺度的影响。
Biomimetics (Basel). 2020 Jan 27;5(1):4. doi: 10.3390/biomimetics5010004.

本文引用的文献

2
Can mechanics control pattern formation in plants?机械力能控制植物中的模式形成吗?
Curr Opin Plant Biol. 2007 Feb;10(1):58-62. doi: 10.1016/j.pbi.2006.11.014. Epub 2006 Nov 30.
3
Mechanism of the Seismonastic Reaction in Mimosa pudica.含羞草感震运动的机制。
Plant Physiol. 1969 Aug;44(8):1101-7. doi: 10.1104/pp.44.8.1101.
5
How the Venus flytrap snaps.捕蝇草是如何合拢的。
Nature. 2005 Jan 27;433(7024):421-5. doi: 10.1038/nature03185.
6
The power of movement in plants: the role of osmotic machines.
Q Rev Biophys. 1981 May;14(2):173-222. doi: 10.1017/s0033583500002249.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验