Suppr超能文献

水鳖中快速捕获猎物的生物力学。

The biomechanics of fast prey capture in aquatic bladderworts.

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.

出版信息

Biol Lett. 2011 Aug 23;7(4):547-50. doi: 10.1098/rsbl.2011.0057. Epub 2011 Mar 9.

Abstract

Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey.

摘要

肉食植物的运动速度可与动物猎物相媲美,因此为我们深入了解植物快速运动的进化提供了有趣的线索。在这里,我们描述了水生狸藻 Utricularia stellaris 捕捉游泳昆虫幼虫或线虫等猎物的机制,以补充其氮的摄入。关闭的狸藻膀胱通过从膀胱中抽出水分来产生低于环境压力的内部压力,从而在膀胱壁上建立弹性不稳定性。当它们的活门外部感觉触发毛被移动的猎物机械刺激时,活门在 300-700 μs 内打开,导致强烈的向内流动,从而困住猎物。膀胱活门的打开时间比肉食植物中任何已记录的运动都要快。因此,狸藻已经进化出一种独特的生物力学系统,以获得相对于其动物猎物的优势。

相似文献

1
The biomechanics of fast prey capture in aquatic bladderworts.
Biol Lett. 2011 Aug 23;7(4):547-50. doi: 10.1098/rsbl.2011.0057. Epub 2011 Mar 9.
2
Carnivorous Utricularia: the buckling scenario.
Plant Signal Behav. 2011 Nov;6(11):1752-4. doi: 10.4161/psb.6.11.17804. Epub 2011 Nov 1.
3
The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia.
Plant Signal Behav. 2011 May;6(5):640-6. doi: 10.4161/psb.6.5.14980. Epub 2011 May 1.
5
Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey.
New Phytol. 2020 Oct;228(2):586-595. doi: 10.1111/nph.16726. Epub 2020 Jul 8.
6
Spontaneous firings of carnivorous aquatic Utricularia traps: temporal patterns and mechanical oscillations.
PLoS One. 2011;6(5):e20205. doi: 10.1371/journal.pone.0020205. Epub 2011 May 27.
7
Capture of algae promotes growth and propagation in aquatic Utricularia.
Ann Bot. 2015 Feb;115(2):227-36. doi: 10.1093/aob/mcu236. Epub 2014 Dec 18.
9
A dynamical model for the Utricularia trap.
J R Soc Interface. 2012 Nov 7;9(76):3129-39. doi: 10.1098/rsif.2012.0512. Epub 2012 Aug 1.
10
Fluorescent prey traps in carnivorous plants.
Plant Biol (Stuttg). 2013 May;15(3):611-5. doi: 10.1111/j.1438-8677.2012.00709.x.

引用本文的文献

1
Homogalacturonans and Hemicelluloses in the External Glands of Traps.
Int J Mol Sci. 2024 Dec 6;25(23):13124. doi: 10.3390/ijms252313124.
3
Elastic pinch biomechanisms can yield consistent launch speeds regardless of projectile mass.
J R Soc Interface. 2023 Aug;20(205):20230234. doi: 10.1098/rsif.2023.0234. Epub 2023 Aug 23.
4
Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels.
Sci Adv. 2022 Apr 15;8(15):eabm9608. doi: 10.1126/sciadv.abm9608. Epub 2022 Apr 13.
5
A Historical Perspective of Bladderworts (): Traps, Carnivory and Body Architecture.
Plants (Basel). 2021 Dec 3;10(12):2656. doi: 10.3390/plants10122656.
6
Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps.
Proc Biol Sci. 2021 May 26;288(1951):20210771. doi: 10.1098/rspb.2021.0771.
7
Effect of Gravity on the Scale of Compliant Shells.
Biomimetics (Basel). 2020 Jan 27;5(1):4. doi: 10.3390/biomimetics5010004.

本文引用的文献

1
Sporangium Discharge in Pilobolus: A Photographic Study.
Science. 1964 Nov 13;146(3646):925-7. doi: 10.1126/science.146.3646.925.
2
Can mechanics control pattern formation in plants?
Curr Opin Plant Biol. 2007 Feb;10(1):58-62. doi: 10.1016/j.pbi.2006.11.014. Epub 2006 Nov 30.
3
Mechanism of the Seismonastic Reaction in Mimosa pudica.
Plant Physiol. 1969 Aug;44(8):1101-7. doi: 10.1104/pp.44.8.1101.
4
Physical limits and design principles for plant and fungal movements.
Science. 2005 May 27;308(5726):1308-10. doi: 10.1126/science.1107976.
5
How the Venus flytrap snaps.
Nature. 2005 Jan 27;433(7024):421-5. doi: 10.1038/nature03185.
6
The power of movement in plants: the role of osmotic machines.
Q Rev Biophys. 1981 May;14(2):173-222. doi: 10.1017/s0033583500002249.
7
Turgor pressure: direct manometric measurement in single cells of Nitella.
Science. 1967 Mar 31;155(3770):1675-6. doi: 10.1126/science.155.3770.1675.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验