Suppr超能文献

狸藻类植物是已知最小的吸食性捕食者,它们通过产生以惯性为主导的水流来捕获猎物。

Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey.

作者信息

Müller Ulrike K, Berg Otto, Schwaner Janneke M, Brown Matthew D, Li Gen, Voesenek Cees J, van Leeuwen Johan L

机构信息

Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA.

Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA.

出版信息

New Phytol. 2020 Oct;228(2):586-595. doi: 10.1111/nph.16726. Epub 2020 Jul 8.

Abstract

Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.

摘要

水生狸藻类植物(矮狸藻和澳大利亚狸藻)通过机械触发的水下陷阱捕捉浮游动物。这些捕捉结构的特征尺寸小于1毫米,是已知通过吸力捕捉猎物的最小结构之一,而在蠕动流状态下,粘性力会阻止产生快速且节能的吸流,这种吸力机制在该状态下并不有效。为了理解在狸藻陷阱的小尺度上是什么使得吸式捕食成为可能,我们通过实验(使用粒子图像测速技术)和数学方法(使用计算流体动力学和解析数学模型)对其吸流进行了表征。我们发现狸藻陷阱通过产生强大且快速启动的吸力压力来避免蠕动流的不利影响。我们的研究结果表明,陷阱利用了三种形态学适应:陷阱壁对弹性能量的快速释放确保了强大且恒定的吸力压力;陷阱门的快速打开确保了吸力有效地瞬间启动;通向陷阱的短通道确保了未充分发展的流动,从而保持了较宽的有效通道直径。由于陷阱的吸力压力大得多,狸藻陷阱产生的吸流比具有相似口裂大小的幼鱼要强得多。然而,狸藻产生强大吸流的能力要付出相当大的能量代价。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验