Horuk R, Gross J L
Medical Products Department, E.I. du Pont de Nemours & Co., Glenolden Laboratory, PA 19036.
Biochim Biophys Acta. 1990 Apr 9;1052(1):173-8. doi: 10.1016/0167-4889(90)90073-m.
The effect of tumor-promoting phorbol ester treatment on the binding of interleukin-1 beta (IL-1 beta) to specific cell surface receptors was investigated. A 1 h exposure of Raji human B lymphoma cells with the protein kinase C-activating phorbol ester, phorbol dibutyrate (PDBu), reduced IL-1 beta binding by up to 90% of control cells. This effect was dose-dependent and was not observed with 4-alpha-phorbol, an inactive tumor promoter. Analysis of 125I-labeled IL-1 beta binding to intact cells revealed that PDBu caused a 91% decrease in high-affinity cell-surface receptor number without an effect on receptor affinity. The phorbol ester response was rapid (30 min), observed both at 4 and 37 degrees C, and was preceded by the rapid translocation (t much less than 6 min) of protein kinase C (PKC) from the cytosol to the cell membrane. The PDBu-induced decrease in IL-1 beta receptor number was inhibited by prior incubation of cells for 30 min with the PKC inhibitor 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine (H7). The decrease in receptor binding was not due to enhanced IL-1 beta receptor internalization or shedding into the extracellular medium, since a similar effect was observed with solubilized IL-1 beta receptor. The most likely explanation for the phorbol ester effect appears to be cell surface inactivation of IL-1 receptors. These data suggest that modulation of PKC activity could play a role in the regulation of the IL-1 beta receptor.