MALTA CONSOLIDER Team, DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander, Spain.
J Phys Condens Matter. 2010 Mar 31;22(12):125502. doi: 10.1088/0953-8984/22/12/125502. Epub 2010 Mar 8.
This work investigates the centre distribution of the Cr(3+) impurity, the dynamical Jahn-Teller effect in the first (4)T(2) excited state and the thermal shifts of the absorption and emission peaks in LiCaAlF(6):Cr(3+) by means of time-resolved emission spectroscopy. The electronic and vibrational fine structure observed in both the absorption and emission spectra at low temperature are assigned according to the vibrational modes of the internal (CrF(6))(3-) complex and the lattice modes. Zero-phonon lines associated with (4)T(2) --> (4)A(2) and (2)E --> (4)A(2) transitions were detected and assigned on the basis of available high pressure data in LiCaAlF(6):Cr(3+). We have identified the vibrational coupled modes responsible for the vibrational structure of the low temperature emission spectrum and the reduction of the zero-phonon line (ZPL) splitting caused by the dynamical Jahn-Teller effect in the (4)T(2) excited state (Huang-Rhys factor, S(e) = 0.92). In addition, from the temperature variation of the emission intensity I(T), transition energy E(T) and bandwidth H(T), we obtained the vibrational modes that are coupled to the emitting state. We have evaluated the two main contributions to the photoluminescence thermal shift through thermal expansion and high pressure measurements: the implicit contribution induced by changes of thermal population and the explicit contribution induced by thermal expansion effects--40% and 60% of the total shift, respectively.
本工作通过时间分辨发射光谱研究了 Cr(3+)杂质的中心分布、第一(4)T(2)激发态的动力学 Jahn-Teller 效应以及 LiCaAlF(6):Cr(3+)的吸收和发射峰的热位移。在低温下,根据内部(CrF(6))(3-)络合物和晶格模式的振动模式,对吸收和发射光谱中观察到的电子和振动精细结构进行了分配。在 LiCaAlF(6):Cr(3+)中,根据可用的高压数据,检测并分配了与(4)T(2) --> (4)A(2)和(2)E --> (4)A(2)跃迁相关的零声子线。我们已经确定了负责低温发射光谱振动结构的振动耦合模式,并确定了由(4)T(2)激发态动力学 Jahn-Teller 效应引起的零声子线(ZPL)分裂减小的原因(Huang-Rhys 因子,S(e) = 0.92)。此外,从发射强度 I(T)、跃迁能量 E(T)和带宽 H(T)的温度变化中,我们获得了与发射态耦合的振动模式。我们通过热膨胀和高压测量评估了光致发光热位移的两个主要贡献:由热群体变化引起的隐含贡献和由热膨胀效应引起的显式贡献——分别占总位移的 40%和 60%。