Suppr超能文献

杏仁核环路介导焦虑的可逆转和双向控制。

Amygdala circuitry mediating reversible and bidirectional control of anxiety.

机构信息

Department of Bioengineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nature. 2011 Mar 17;471(7338):358-62. doi: 10.1038/nature09820. Epub 2011 Mar 9.

Abstract

Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)--achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA--exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA-CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.

摘要

在没有即时威胁的情况下,焦虑——一种持续的高度警惕状态——在疾病状态下会变得严重衰弱。焦虑症是最常见的精神疾病之一(终生患病率为 28%),也是导致重度抑郁症和药物滥用的原因之一。虽然有人提出,杏仁核作为一个对情绪处理很重要的大脑区域,在焦虑中起作用,但控制焦虑的神经机制仍不清楚。在这里,我们通过使用双光子显微镜的光遗传学、自由活动小鼠的焦虑测定和电生理学来探索与焦虑相关行为相关的神经回路。通过光遗传学不仅可以控制细胞类型,还可以控制细胞之间的特定连接,我们观察到,在杏仁核中央核(CeA)中对基底外侧杏仁核(BLA)末梢进行时间精确的光遗传学刺激——通过病毒转导 BLA 并使用优化密码子的通道视紫红质,然后在下游 CeA 中进行限制光照——产生了急性、可逆的抗焦虑作用。相反,使用第三代盐藻视蛋白(eNpHR3.0)选择性地对相同投射进行光遗传学抑制会增加焦虑相关行为。重要的是,这些效应在直接对 BLA 体进行光遗传学控制时没有观察到,这可能是由于募集了拮抗的下游结构。总之,这些结果表明,特定的 BLA-CeA 投射是哺乳动物大脑中急性焦虑控制的关键回路元件,并证明了在研究与神经精神疾病相关的回路功能时,靶向特定投射而不仅仅是靶向细胞类型的光遗传学的重要性。

相似文献

3
Brain Circuits Mediating Opposing Effects on Emotion and Pain.介导情绪和疼痛相反效应的大脑回路。
J Neurosci. 2018 Jul 11;38(28):6340-6349. doi: 10.1523/JNEUROSCI.2780-17.2018. Epub 2018 Jun 25.
4
6
Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats.光遗传激活清醒大鼠杏仁核诱导内脏高敏感。
Am J Physiol Gastrointest Liver Physiol. 2018 Mar 1;314(3):G448-G457. doi: 10.1152/ajpgi.00370.2017. Epub 2017 Dec 14.

引用本文的文献

8
Research progress on the neural circuits mechanisms of anxiety.焦虑的神经回路机制研究进展
Front Neural Circuits. 2025 Jun 25;19:1609145. doi: 10.3389/fncir.2025.1609145. eCollection 2025.

本文引用的文献

3
Controlling the brain with light.用光控制大脑。
Sci Am. 2010 Nov;303(5):48-55. doi: 10.1038/scientificamerican1110-48.
8
The neurocircuitry of fear, stress, and anxiety disorders.恐惧、压力和焦虑障碍的神经回路。
Neuropsychopharmacology. 2010 Jan;35(1):169-91. doi: 10.1038/npp.2009.83.
9
Stress, memory and the amygdala.压力、记忆与杏仁核。
Nat Rev Neurosci. 2009 Jun;10(6):423-33. doi: 10.1038/nrn2651.
10
Brain stress systems in the amygdala and addiction.杏仁核中的脑应激系统与成瘾
Brain Res. 2009 Oct 13;1293:61-75. doi: 10.1016/j.brainres.2009.03.038. Epub 2009 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验