Department of Bioengineering, Stanford University, Stanford, California 94305, USA.
Nature. 2011 Mar 17;471(7338):358-62. doi: 10.1038/nature09820. Epub 2011 Mar 9.
Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)--achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA--exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA-CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.
在没有即时威胁的情况下,焦虑——一种持续的高度警惕状态——在疾病状态下会变得严重衰弱。焦虑症是最常见的精神疾病之一(终生患病率为 28%),也是导致重度抑郁症和药物滥用的原因之一。虽然有人提出,杏仁核作为一个对情绪处理很重要的大脑区域,在焦虑中起作用,但控制焦虑的神经机制仍不清楚。在这里,我们通过使用双光子显微镜的光遗传学、自由活动小鼠的焦虑测定和电生理学来探索与焦虑相关行为相关的神经回路。通过光遗传学不仅可以控制细胞类型,还可以控制细胞之间的特定连接,我们观察到,在杏仁核中央核(CeA)中对基底外侧杏仁核(BLA)末梢进行时间精确的光遗传学刺激——通过病毒转导 BLA 并使用优化密码子的通道视紫红质,然后在下游 CeA 中进行限制光照——产生了急性、可逆的抗焦虑作用。相反,使用第三代盐藻视蛋白(eNpHR3.0)选择性地对相同投射进行光遗传学抑制会增加焦虑相关行为。重要的是,这些效应在直接对 BLA 体进行光遗传学控制时没有观察到,这可能是由于募集了拮抗的下游结构。总之,这些结果表明,特定的 BLA-CeA 投射是哺乳动物大脑中急性焦虑控制的关键回路元件,并证明了在研究与神经精神疾病相关的回路功能时,靶向特定投射而不仅仅是靶向细胞类型的光遗传学的重要性。