Suppr超能文献

幂律输入-输出转移函数解释了视觉皮层神经元的对比响应和调谐特性。

Power-law input-output transfer functions explain the contrast-response and tuning properties of neurons in visual cortex.

机构信息

Laboratoire de Neurophysique et Physiologie, Université Paris Descartes, Paris, France.

出版信息

PLoS Comput Biol. 2011 Feb;7(2):e1001078. doi: 10.1371/journal.pcbi.1001078. Epub 2011 Feb 24.

Abstract

We develop a unified model accounting simultaneously for the contrast invariance of the width of the orientation tuning curves (OT) and for the sigmoidal shape of the contrast response function (CRF) of neurons in the primary visual cortex (V1). We determine analytically the conditions for the structure of the afferent LGN and recurrent V1 inputs that lead to these properties for a hypercolumn composed of rate based neurons with a power-law transfer function. We investigate what are the relative contributions of single neuron and network properties in shaping the OT and the CRF. We test these results with numerical simulations of a network of conductance-based model (CBM) neurons and we demonstrate that they are valid and more robust here than in the rate model. The results indicate that because of the acceleration in the transfer function, described here by a power-law, the orientation tuning curves of V1 neurons are more tuned, and their CRF is steeper than those of their inputs. Last, we show that it is possible to account for the diversity in the measured CRFs by introducing heterogeneities either in single neuron properties or in the input to the neurons. We show how correlations among the parameters that characterize the CRF depend on these sources of heterogeneities. Comparison with experimental data suggests that both sources contribute nearly equally to the diversity of CRF shapes observed in V1 neurons.

摘要

我们开发了一个统一的模型,同时考虑了初级视觉皮层(V1)神经元的朝向调谐曲线(OT)宽度的对比度不变性和对比度响应函数(CRF)的 S 形形状。我们分析地确定了导致由基于率的神经元组成的超柱具有幂律传递函数的这些特性的LGN 和 V1 传入的结构条件。我们研究了单神经元和网络特性在塑造 OT 和 CRF 方面的相对贡献。我们使用基于电导的模型(CBM)神经元的网络的数值模拟来测试这些结果,并证明它们在这里比在率模型中更有效和更稳健。结果表明,由于传递函数的加速,由幂律描述,V1 神经元的朝向调谐曲线更加调谐,并且它们的 CRF 比其输入的 CRF 更陡峭。最后,我们表明,通过在单个神经元特性或神经元输入中引入异质性,有可能解释测量的 CRF 的多样性。我们展示了表征 CRF 的参数之间的相关性如何取决于这些异质性源。与实验数据的比较表明,这两个来源对 V1 神经元中观察到的 CRF 形状的多样性几乎同样重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f954/3044767/c4eecca07653/pcbi.1001078.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验