Suppr超能文献

钙调蛋白解离在体外调节刷状缘肌球蛋白I(110-kD-钙调蛋白)的机械化学活性。

Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro.

作者信息

Collins K, Sellers J R, Matsudaira P

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge.

出版信息

J Cell Biol. 1990 Apr;110(4):1137-47. doi: 10.1083/jcb.110.4.1137.

Abstract

110-kD-calmodulin, when immobilized on nitrocellulose-coated coverslips, translocates actin filaments at a maximal rate of 0.07-0.1 micron/s at 37 degrees C. Actin activates MgATPase activity greater than 40-fold, with a Km of 40 microM and Vmax of 0.86 s-1 (323 nmol/min/mg). The rate of motility mediated by 110-kD-calmodulin is dependent on temperature and concentration of ATP, but independent of time, actin filament length, amount of enzyme, or ionic strength. Tropomyosin inhibits actin binding by 110-kD-calmodulin in MgATP and inhibits motility. Micromolar calcium slightly increases the rate of motility and increases the actin-activated MgATP hydrolysis of the intact complex. In 0.1 mM or higher calcium, motility ceases and actin-dependent MgATPase activity remains at a low rate not activated by increasing actin concentration. Correlated with these inhibitions of activity, a subset of calmodulin is dissociated from the complex. To determine if calmodulin loss is the cause of calcium inhibition, we assayed the ability of calmodulin to rescue the calcium-inactivated enzyme. Readdition of calmodulin to the nitrocellulose-bound, calcium-inactivated enzyme completely restores motility. Addition of calmodulin also restores actin activation to MgATPase activity in high calcium, but does not affect the activity of the enzyme in EGTA. These results demonstrate that in vitro 110-kD-calmodulin functions as a calcium-sensitive mechanoenzyme, a vertebrate myosin I. The properties of this enzyme suggest that despite unique structure and regulation, myosins I and II share a molecular mechanism of motility.

摘要

110-kD钙调蛋白固定在硝酸纤维素包被的盖玻片上时,在37℃下以0.07 - 0.1微米/秒的最大速率转运肌动蛋白丝。肌动蛋白使MgATP酶活性激活超过40倍,Km为40微摩尔,Vmax为0.86秒-1(323纳摩尔/分钟/毫克)。由110-kD钙调蛋白介导的运动速率取决于温度和ATP浓度,但与时间、肌动蛋白丝长度、酶量或离子强度无关。原肌球蛋白在MgATP中抑制110-kD钙调蛋白与肌动蛋白的结合并抑制运动。微摩尔浓度的钙略微增加运动速率,并增加完整复合物的肌动蛋白激活的MgATP水解。在0.1毫摩尔或更高浓度的钙中,运动停止,肌动蛋白依赖性MgATP酶活性保持在低速率,且不会因增加肌动蛋白浓度而激活。与这些活性抑制相关的是,一部分钙调蛋白从复合物中解离。为了确定钙调蛋白的丢失是否是钙抑制的原因,我们检测了钙调蛋白拯救钙失活酶的能力。将钙调蛋白重新添加到硝酸纤维素结合的、钙失活的酶中可完全恢复运动。添加钙调蛋白还可在高钙条件下恢复肌动蛋白对MgATP酶活性的激活,但不影响该酶在EGTA中的活性。这些结果表明,体外110-kD钙调蛋白作为一种钙敏感的机械酶,即脊椎动物肌球蛋白I发挥作用。这种酶特性表明,尽管结构和调节独特,但肌球蛋白I和II共享一种运动分子机制。

相似文献

3
Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry.
J Cell Biol. 1993 Aug;122(3):613-21. doi: 10.1083/jcb.122.3.613.
10
Differential regulation of vertebrate myosins I and II.
J Cell Sci Suppl. 1991;14:11-6. doi: 10.1242/jcs.1991.supplement_14.3.

引用本文的文献

1
Calmodulin: a highly conserved and ubiquitous Ca sensor.
Proc Jpn Acad Ser B Phys Biol Sci. 2024;100(7):368-386. doi: 10.2183/pjab.100.025.
2
Pathophysiology of human hearing loss associated with variants in myosins.
Front Physiol. 2024 Mar 18;15:1374901. doi: 10.3389/fphys.2024.1374901. eCollection 2024.
3
Does the Actin Network Architecture Leverage Myosin-I Functions?
Biology (Basel). 2022 Jun 29;11(7):989. doi: 10.3390/biology11070989.
4
Discovery of ultrafast myosin, its amino acid sequence, and structural features.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2120962119.
5
Effects of Mutations in the Phenamacril-Binding Site of Myosin-1 on Its Motor Function and Phenamacril Sensitivity.
ACS Omega. 2020 Aug 20;5(34):21815-21823. doi: 10.1021/acsomega.0c02886. eCollection 2020 Sep 1.
6
Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis.
Exp Cell Res. 2019 Nov 15;384(2):111625. doi: 10.1016/j.yexcr.2019.111625. Epub 2019 Sep 19.
7
Tropomyosin isoforms bias actin track selection by vertebrate myosin Va.
Mol Biol Cell. 2016 Oct 1;27(19):2889-97. doi: 10.1091/mbc.E15-09-0641. Epub 2016 Aug 17.
8
Myosin-I molecular motors at a glance.
J Cell Sci. 2016 Jul 15;129(14):2689-95. doi: 10.1242/jcs.186403. Epub 2016 Jul 11.
9
Various Themes of Myosin Regulation.
J Mol Biol. 2016 May 8;428(9 Pt B):1927-46. doi: 10.1016/j.jmb.2016.01.022. Epub 2016 Jan 28.
10
Myosin light chains: Teaching old dogs new tricks.
Bioarchitecture. 2014;4(6):169-88. doi: 10.1080/19490992.2015.1054092.

本文引用的文献

5
The brush border cytoskeleton is not static: in vivo turnover of proteins.
J Cell Biol. 1984 Feb;98(2):641-5. doi: 10.1083/jcb.98.2.641.
6
ATP-dependent movement of myosin in vitro: characterization of a quantitative assay.
J Cell Biol. 1984 Nov;99(5):1867-71. doi: 10.1083/jcb.99.5.1867.
7
Movement of scallop myosin on Nitella actin filaments: regulation by calcium.
Proc Natl Acad Sci U S A. 1984 Nov;81(21):6775-8. doi: 10.1073/pnas.81.21.6775.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验