Institute for Microstructural Sciences, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A0R6, Canada.
Biotechnol Bioeng. 2011 Aug;108(8):1936-41. doi: 10.1002/bit.23127. Epub 2011 Mar 29.
Patch-clamp is an important method to monitor the electrophysiological activity of cells and the role of pharmacological compounds on specific ion channel proteins. In recent years, planar patch-clamp chips have been developed as a higher throughput approach to the established glass-pipette method. However, proper conditions to optimize the high resistance cell-to-probe seals required to measure the small currents resulting from ion channel activity are still the subject of conjecture. Here, we report on the design of multiple-aperture (sieve) chips to rapidly facilitate assessment of cell-to-aperture interactions in statistically significant numbers. We propose a method to pre-screen the quality of seals based on a dye loading protocol through apertures in the chip and subsequent evaluation with fluorescence confocal microscopy. We also show the first scanning electron micrograph of a focused ion beam section of a cell in a patch-clamp chip aperture.
膜片钳技术是监测细胞电生理活动以及药物化合物对特定离子通道蛋白作用的重要方法。近年来,平面膜片钳芯片作为一种高通量方法,对传统的玻璃微电极方法进行了改进。然而,仍需要优化高阻细胞-探头封接的条件,以测量由离子通道活动产生的小电流,这仍然是一个推测性的问题。在这里,我们报告了多微孔(筛孔)芯片的设计,以便快速评估以统计学意义数量的细胞与微孔的相互作用。我们提出了一种基于芯片微孔内染料加载方案的预筛选封接质量的方法,并通过荧光共聚焦显微镜进行后续评估。我们还展示了聚焦离子束剖切面的首个扫描电子显微镜图,该图显示了在膜片钳芯片微孔中的一个细胞。