Suppr超能文献

从了解细胞功能到新药发现:平面膜片钳阵列芯片技术的作用。

From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology.

机构信息

Institute for Microstructural Sciences, National Research Council of Canada Ottawa, ON, Canada.

出版信息

Front Pharmacol. 2011 Oct 3;2:51. doi: 10.3389/fphar.2011.00051. eCollection 2011.

Abstract

All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions - including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells.

摘要

所有可兴奋细胞的功能都依赖于嵌入其质膜的离子通道。离子通道结构或功能的扰动会导致从心脏功能障碍到神经退行性疾病等多种病理学变化。因此,为了了解可兴奋细胞的功能并纠正其病理生理学,了解各种实验条件下(包括暴露于新的药物靶点)离子通道的功能非常重要。玻璃微电极膜片钳是监测神经元内在和突触特性的最先进技术。然而,这种技术劳动强度大,数据吞吐量低。平面膜片钳芯片,集成到自动化系统中,提供高通量,但仅限于悬浮液中的分离细胞,从而限制了它们在模拟生理功能中的应用。因此,这些芯片最不适用于涉及神经元通信的研究。相比之下,多电极阵列 (MEA) 能够通过测量来自多个细胞外部位的局部场电位来监测网络活动,但从这些多路复用信号中提取特定的离子通道活性具有挑战性。在这里,我们描述了一种新的平面膜片钳芯片技术,该技术能够同时在突触连接的神经元网络的多个部位对单个神经元进行高分辨率电生理检测,从而结合了 MEA 和膜片钳技术的优势。每个神经元都可以通过连接到专用地下微流控通道的孔进行探测。通过物理吸附或化学吸附化学线索将网络中生长的神经元与孔对准。在这篇综述中,我们描述了这些芯片的设计和制造过程、用于细胞放置的化学图案化方法,并展示了来自培养神经元细胞的生理数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/794a/3184600/71f3a9c042cd/fphar-02-00051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验