Suppr超能文献

无表面活性剂水相加工的光电导全碳复合材料。

Surfactant-free water-processable photoconductive all-carbon composite.

机构信息

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Am Chem Soc. 2011 Apr 6;133(13):4940-7. doi: 10.1021/ja1103734. Epub 2011 Mar 10.

Abstract

Heterojunctions between different graphitic nanostructures, including fullerenes, carbon nanotubes and graphene-based sheets, have attracted significant interest for light to electrical energy conversion. Because of their poor solubility, fabrication of such all-carbon nanocomposites typically involves covalently linking the individual constituents or the extensive surface functionalization to improve their solvent processability for mixing. However, such strategies often deteriorate or contaminate the functional carbon surfaces. Here we report that fullerenes, pristine single walled carbon nanotubes, and graphene oxide sheets can be conveniently coassembled in water to yield a stable colloidal dispersion for thin film processing. After thermal reduction of graphene oxide, a solvent-resistant photoconductive hybrid of fullerene-nanotube-graphene was obtained with on-off ratio of nearly 6 orders of magnitude. Photovoltaic devices made with the all-carbon hybrid as the active layer and an additional fullerene block layer showed unprecedented photovoltaic responses among all known all-carbon-based materials with an open circuit voltage of 0.59 V and a power conversion efficiency of 0.21%. The ease of making such surfactant-free, water-processed, carbon thin films could lead to their wide applications in organic optoelectronic devices.

摘要

不同石墨纳米结构(包括富勒烯、碳纳米管和基于石墨烯的薄片)之间的异质结,因其在光到电能的转换方面的优异性能而受到了广泛关注。由于它们的溶解度较差,通常需要将各个成分通过共价键连接或进行广泛的表面功能化来改善它们在溶剂中的加工性能,以进行混合。然而,这样的策略往往会恶化或污染功能碳表面。在这里,我们报告称,富勒烯、原始的单壁碳纳米管和氧化石墨烯薄片可以在水中方便地共组装,以产生稳定的胶体分散体,用于薄膜加工。在氧化石墨烯还原后,得到了一种耐溶剂的富勒烯-纳米管-石墨烯光导混合体,其开关比接近 6 个数量级。使用全碳混合体作为活性层并添加富勒烯块层的光伏器件在所有已知的全碳基材料中表现出了前所未有的光伏响应,开路电压为 0.59V,功率转换效率为 0.21%。这种无需使用表面活性剂、可在水中处理的碳薄膜的制备方法简单,可能会导致其在有机光电设备中的广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验