Suppr超能文献

cGMP 磷酸二酯酶 γ-亚基的 N 端半段有助于稳定 GTP 酶加速蛋白复合物。

N-terminal half of the cGMP phosphodiesterase gamma-subunit contributes to stabilization of the GTPase-accelerating protein complex.

机构信息

Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

出版信息

J Biol Chem. 2011 Apr 29;286(17):15260-7. doi: 10.1074/jbc.M110.210567. Epub 2011 Mar 10.

Abstract

In the visual signal terminating transition state, the cyclic GMP phosphodiesterase (PDE6) inhibitory γ-subunit (PDEγ) stimulates GTPase activity of the α-subunit of transducin (αt) by enhancing the interaction between αt and its regulator of G protein signaling (RGS9), which is constitutively bound to the type 5 G protein β-subunit (β5). Although it is known from a crystal structure of partial molecules that the PDEγ C terminus contacts with both αt and RGS9, contributions from the intrinsically disordered PDEγ N-terminal half remain unclear. In this study, we were able to investigate this issue using a photolabel transfer strategy that allows for mapping the interface of full-length proteins. We observed label transfer from PDEγ N-terminal positions 50, 30, and 16 to RGS9·β5 in the GTPase-accelerating protein (GAP) complex composed of PDEγ·αt·RGS9·β5. In support of a direct PDEγ N-terminal interaction with RGS9·β5, the PDEγ N-terminal peptide PDEγ(1-61) abolished label transfer to RGS9·β5, and another N-terminal peptide, PDEγ(10-30), disassembled the GAP complex in label transfer and pulldown experiments. Furthermore, we determined that the PDEγ C-terminal interaction with αt was enhanced whereas the N-terminal interaction was weakened upon changing the αt conformation from the signaling state to the transition state. This "rearrangement" of PDEγ domain interactions with αt appears to facilitate the interaction of the PDEγ N-terminal half with RGS9·β5 and hence its contribution to optimal stabilization of the GAP complex.

摘要

在视觉信号终止过渡态中,环磷酸鸟苷磷酸二酯酶(PDE6)抑制性γ亚基(PDEγ)通过增强转导蛋白(αt)与其 G 蛋白信号调节因子(RGS9)之间的相互作用来刺激 GTP 酶活性,RGS9 与 G 蛋白的 5 型β亚基(β5)结合。虽然从部分分子的晶体结构中可知 PDEγ C 端与 αt 和 RGS9 都有接触,但 PDEγ 无规则 N 端的贡献仍不清楚。在这项研究中,我们使用光标记转移策略能够研究这个问题,该策略允许对全长蛋白质的界面进行作图。我们观察到从 PDEγ N 端位置 50、30 和 16 到 PDEγ·αt·RGS9·β5 中的 GTP 酶加速蛋白(GAP)复合物中的 RGS9·β5 的标记转移。支持 PDEγ N 端与 RGS9·β5 的直接相互作用,PDEγ N 端肽 PDEγ(1-61)消除了对 RGS9·β5 的标记转移,另一个 N 端肽 PDEγ(10-30)在标记转移和下拉实验中使 GAP 复合物解体。此外,我们确定 PDEγ 与 αt 的 C 端相互作用增强,而当αt构象从信号态转变为过渡态时,N 端相互作用减弱。这种 PDEγ 结构域与αt 的相互作用“重排”似乎促进了 PDEγ N 端与 RGS9·β5 的相互作用,从而有助于最佳稳定 GAP 复合物。

相似文献

本文引用的文献

5
Assembly of high order G alpha q-effector complexes with RGS proteins.高阶Gαq效应蛋白复合物与RGS蛋白的组装。
J Biol Chem. 2008 Dec 12;283(50):34923-34. doi: 10.1074/jbc.M805860200. Epub 2008 Oct 20.
6
Signal transducing membrane complexes of photoreceptor outer segments.光感受器外段的信号转导膜复合物。
Vision Res. 2008 Sep;48(20):2052-61. doi: 10.1016/j.visres.2008.03.010. Epub 2008 May 5.
8
Crystal structure of the multifunctional Gbeta5-RGS9 complex.多功能Gbeta5-RGS9复合物的晶体结构
Nat Struct Mol Biol. 2008 Feb;15(2):155-62. doi: 10.1038/nsmb.1377. Epub 2008 Jan 20.
10
Kinetic mechanism of RGS9-1 potentiation by R9AP.R9AP增强RGS9-1的动力学机制。
Biochemistry. 2006 Sep 5;45(35):10690-7. doi: 10.1021/bi060376a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验