Department of Materials, Imperial College London, London SW7 2AZ, UK.
J Phys Condens Matter. 2010 May 5;22(17):175004. doi: 10.1088/0953-8984/22/17/175004. Epub 2010 Apr 7.
Computer simulations are used to investigate the stability of typical dislocations in uranium dioxide. We explain in detail the methods used to produce the dislocation configurations and calculate the line energy and Peierls barrier for pure edge and screw dislocations with the shortest Burgers vector ½⟨110⟩. The easiest slip system is found to be the {100}⟨110⟩ system for stoichiometric UO(2), in agreement with experimental observations. We also examine the different strain fields associated with these line defects and the close agreement between the strain field predicted by atomic scale models and the application of elastic theory. Molecular dynamics simulations are used to investigate the processes of slip that may occur for the three different edge dislocation geometries and nudged elastic band calculations are used to establish a value for the Peierls barrier, showing the possible utility of the method in investigating both thermodynamic average behaviour and dynamic processes such as creep and plastic deformation.
计算机模拟被用于研究二氧化铀中典型位错的稳定性。我们详细解释了产生位错构型的方法,并计算了最短 Burgers 矢量为 ½⟨110⟩的纯刃型和螺型位错的线能和派尔斯势垒。对于化学计量的 UO(2),最容易的滑移系统被发现是{100}⟨110⟩系统,这与实验观察结果一致。我们还研究了与这些线缺陷相关的不同应变场,以及原子尺度模型预测的应变场与弹性理论的应用之间的紧密一致性。分子动力学模拟被用于研究可能发生的三种不同刃型位错几何形状的滑移过程,而受推弹性带计算被用于确定派尔斯势垒的值,这表明该方法在研究热力学平均行为和蠕变和塑性变形等动态过程方面具有潜在的应用价值。