Suppr超能文献

全势能多体散射理论与空间填充单元在束缚态和连续态中的应用。

Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

机构信息

Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain.

出版信息

J Phys Condens Matter. 2010 May 12;22(18):185501. doi: 10.1088/0953-8984/22/18/185501. Epub 2010 Apr 15.

Abstract

We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

摘要

我们提出了一种严格的实空间全势多重散射理论(FP-MST)推导,该理论没有迄今为止阻碍其发展的缺点(特别是需要将晶胞形状函数展开为球谐函数和矩形矩阵),适用于连续态和束缚态,并且分区条件不苛刻且易于实现。在这方面,我们给出了一种新的方案,用于生成截断势晶胞的局部基函数,该方案简单、快速、高效,适用于任何形状的晶胞,并将散射波函数展开中的球谐函数数量减少到最小。该方法还避免了由于在空间中的另一点(通常是另一个晶胞中心)重新展开球汉克尔函数而需要饱和“内部和”的需要。因此,这种方法为 muffin-tin (MT) 近似中的 MST 提供了直接扩展,只有一个截断参数由经典关系 l(max) = kR(b) 给出,其中 k 是电子波矢(无论是在所考虑系统的激发态还是基态),R(b) 是散射晶胞的边界球半径。此外,理论的散射路径算子可以在 l(max) --> ∞ 极限下找到一个绝对收敛的过程。因此,这一特性为 FP-MST 作为电子结构计算的可行方法提供了坚实的基础,并使得 x 射线光谱学(特别是光电电子衍射、吸收和反常散射等)的计算变得简单且通用,与相应的 MT 理论的易用性和多功能性相匹配。我们给出了该理论在连续态和束缚态方面的一些数值应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验