Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany.
Chemphyschem. 2011 Apr 4;12(5):999-1009. doi: 10.1002/cphc.201000803. Epub 2011 Mar 10.
The translational and orientational potential energy surfaces (PESs) of n-alkanethiols with up to four carbon atoms are studied for (√(3)×√(3))R30° self-assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long-chain thiols. The tilt of the thiol molecules is determined by a compromise between the preferred binding geometry at the sulfur atom and the steric requirements of the alkane chains. The Au-S bond lengths, offset from the bridge position (brg), and the Au-S-C bond angles result in tilt angles of the S-C bond in the range of 55-60°. As DFT/generalized gradient approximation systematically underestimates chain-chain interactions, the binding energies are corrected by comparison to MP2 interaction energies of alkane dimers in SAM-like configurations. The resulting thiol binding energies increase by approximately 1 kcal mol(-1) per CH(2) group, which results in a substantial stabilization of long-chain SAMs due to chain-chain interactions. Furthermore, as the chain length increases, the accessible range of backbone tilt angles is constrained due to steric effects. The combination of these two effects may explain why SAM structures with long-chain thiols exhibit higher order in experiments. For each thiol two favorable SAM structures are found with the sulfur head group at the fcc-brg and hcp-brg positions, respectively. These domains may coexist in thermal equilibrium. In combination with the symmetry of the gold (111) surface, this raises the possibility of up to six different domains on single-crystal terraces. Reconstructions by an adatom or vacancy of ethanethiol SAMs with (√(3)×√(3))R30° lattice are also studied using PES scans. The results indicate that adsorption of thiols next to a vacancy is favorable and may lead to point defects inside SAMs.
本文研究了具有最多四个碳原子的正烷硫醇在(√(3)×√(3))R30°自组装单分子层(SAM)中的平动和取向势能面(PES)。PES 表明,甲硫醇可能形成长链硫醇无法形成的 SAM 结构。硫醇分子的倾斜是由硫原子的优选结合几何形状和烷链的空间位阻要求之间的折衷决定的。Au-S 键长偏离桥位(brg),Au-S-C 键角导致 S-C 键的倾斜角在 55-60°范围内。由于 DFT/广义梯度近似系统地低估了链间相互作用,因此通过与 SAM 类似构型中烷烃二聚体的 MP2 相互作用能进行比较来校正结合能。结果表明,每个 CH2 基团的硫醇结合能增加约 1 kcal/mol-1,这导致由于链间相互作用,长链 SAM 得到了很大的稳定化。此外,随着链长的增加,由于空间位阻效应,骨架倾斜角度的可及范围受到限制。这两种效应的结合可能解释了为什么长链硫醇的 SAM 结构在实验中表现出更高的有序性。对于每个硫醇,都发现了两种有利的 SAM 结构,其硫原子基团分别位于 fcc-brg 和 hcp-brg 位置。这些区域可能在热平衡中共存。结合金(111)表面的对称性,这就有可能在单晶台阶上存在多达六个不同的区域。使用 PES 扫描还研究了(√(3)×√(3))R30°晶格下乙硫醇 SAM 的 adatoms 或空位重构。结果表明,空位附近吸附硫醇是有利的,可能导致 SAM 内部出现点缺陷。