Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Small. 2011 Apr 4;7(7):920-9. doi: 10.1002/smll.201002101. Epub 2011 Mar 11.
The directed assembly of gold nanoparticles is essential for their use in many kinds of applications, such as electronic devices, biological labels, and sensors. Herein an atomic alteration in the molecular structure of ligand-stabilized gold nanoparticles that can shift the interparticle distance up to 1 nm upon covalent coupling to organic-inorganic superstructures is presented. Gold nanoparticles are stabilized by two octadentate thioether ligands and have a mean diameter of 1.1 nm. The ligands contain a central rigid rod varying in length and terminally functionalized with a protected acetylene. The two peripheral functional groups on each particle enable the directed assembly of nanoparticles to dimers, trimers, and tetramers by oxidative acetylene coupling. This is a wet chemical protocol resulting in covalently bound nanoparticles. These organic-inorganic hybrid superstructures are analyzed by transmission electron microscopy, small angle X-ray scattering, and UV/vis spectroscopy. The focus of the comparison here is the subunit, which is anchoring the bridgehead, either a pyridine or benzene moiety. The pyridine-based ligands reflect the calculated length of the rigid-rod spacer in their interparticle distances in the obtained hybrid structures. This suggests a perpendicular arrangement that results from the coordination of the pyridine's lone pair to the gold surface. An atomic variation in the ligand's center leads to smaller interparticle distances in the case of hybrid structures obtained from benzene ligands. This large difference in the spatial arrangement suggests a tangential arrangement of the interparticle bridging structure in the latter case. Consequently a rather flat arrangement parallel to the particle surface must be assumed for the central benzene unit of the benzene-based ligand.
金纳米粒子的定向组装对于它们在许多应用中的使用至关重要,例如电子设备、生物标记物和传感器。本文介绍了一种配体稳定的金纳米粒子的分子结构中的原子变化,这种变化可以在与有机-无机超结构的共价偶联时将粒子间距离移动高达 1nm。金纳米粒子由两个八齿硫醚配体稳定,平均直径为 1.1nm。配体含有一个中央刚性棒,其长度不同,末端官能化有一个保护的乙炔基。每个粒子上的两个外围官能团使纳米粒子通过氧化乙炔偶联定向组装成二聚体、三聚体和四聚体。这是一种导致共价结合纳米粒子的湿化学方案。这些有机-无机杂化超结构通过透射电子显微镜、小角 X 射线散射和 UV/vis 光谱进行分析。这里比较的重点是桥接基,它要么是吡啶基,要么是苯基,锚定亚单位。基于吡啶的配体在其获得的杂化结构中的粒子间距离反映了刚性-棒间隔体的计算长度。这表明这是一种由于吡啶的孤对电子与金表面的配位而产生的垂直排列。配体中心的原子变化导致苯基金属配体获得的杂化结构中粒子间距离较小。这种空间排列的巨大差异表明在后者情况下,粒子间桥接结构的排列是切线的。因此,对于基于苯的配体的中央苯单元,必须假设其在平行于粒子表面的相当平坦的排列。