The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, USA.
ACS Appl Mater Interfaces. 2011 Apr;3(4):1022-32. doi: 10.1021/am101148s. Epub 2011 Mar 11.
Black-to-transmissive switching polymer electrochromic devices (ECDs) were designed using a set of spray-processable cathodically coloring polymers, a non-color-changing electroactive polymer poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) as the charge-compensating counter electrode, and a highly conducting gel electrolyte (6.5 mS cm(-1)). The color "black" was obtained by utilizing (1) individual copolymers absorbing across the visible spectrum, and (2) blends and bilayers of several polymer electrochromes with complementary spectral absorption. Neutral-state black and ink-like dark purple-blue (or "ink-black") donor-acceptor (DA) copolymers composed of the electron-donor 3,4-propylenedioxythiophene (ProDOT) and the electron-acceptor 2,1,3-benzothiadiazole (BTD) building units, which possess relatively homogeneous absorption profiles across the visible spectrum, were chosen for their propensity to switch to transmissive states upon electrochemical oxidation. A blend of magenta and cyan polymers (PProDOT-(CH(2)OEtHx)(2) and P(ProDOT-BTD-ProDOT), respectively) was produced with the goal of generating the same dark purple-blue color as that obtained with the "ink-black" DA copolymer. While the multi-polymer ECDs demonstrate high contrasts (up to 50%T), and switch from a saturated purple-blue color (L*=32, a*=13, b*=-46) to a light green-blue transmissive state (L*=83, a*=-3, b*=-6), devices made with the DA electrochromic copolymers switch more than two times faster (0.7 s to attain 95% of the full optical change) than those involving the polymer blends (1.6 s), and exhibit more neutral achromatic colors (L*=38, a*=5, b*=-25 for the colored state and L*=87, a*=-3, b*=-2 for the bleached state, correspondingly). The results obtained suggest that these materials should prove to be applicable in both transmissive- (window-type) and reflective-type ECDs.
采用一组可喷涂的阴极着色聚合物、一种非变色电活性聚合物聚(2,2,6,6-四甲基哌啶氧基-4-基甲基丙烯酸酯)(PTMA)作为电荷补偿对电极,以及高导电性凝胶电解质(6.5 mS cm(-1)),设计了黑-透明转换聚合物电致变色器件(ECDs)。颜色“黑色”是通过利用(1)单个共聚物在可见光谱范围内吸收,以及(2)几种聚合物电致变色体的混合物和双层具有互补光谱吸收来获得的。中性状态的黑色和类似墨黑色的深紫蓝色(或“墨黑”)供体-受体(DA)共聚物由电子供体 3,4-亚丙基二氧噻吩(ProDOT)和电子受体 2,1,3-苯并噻二唑(BTD)构建单元组成,它们在可见光谱范围内具有相对均匀的吸收谱,由于其电化学氧化后易于转变为透明状态的倾向而被选择。分别为magenta 和 cyan 聚合物(PProDOT-(CH(2)OEtHx)(2)和 P(ProDOT-BTD-ProDOT))的混合物是为了产生与“墨黑”DA 共聚物获得的相同的深紫蓝色而产生的。虽然多聚合物 ECD 表现出高对比度(高达 50%T),并且从饱和的紫蓝色颜色(L*=32,a*=13,b*=-46)切换到浅绿色蓝色透明状态(L*=83,a*=-3,b*=-6),但由 DA 电致变色共聚物制成的器件的开关速度比涉及聚合物混合物的器件快两倍以上(0.7 s 达到全光学变化的 95%),并且表现出更中性的消色差颜色(L*=38,a*=5,b*=-25 为有色状态,L*=87,a*=-3,b*=-2 为漂白状态,相应地)。所得结果表明,这些材料在透明(窗式)和反射型 ECD 中都应该是适用的。