Suppr超能文献

发声障碍测量用于帕金森病远程监测的适用性

Suitability of dysphonia measurements for telemonitoring of Parkinson's disease.

作者信息

Little Max A, McSharry Patrick E, Hunter Eric J, Spielman Jennifer, Ramig Lorraine O

机构信息

Systems Analysis, Modelling and Prediction Group, University of Oxford, UK.

出版信息

IEEE Trans Biomed Eng. 2009 Apr;56(4):1015. doi: 10.1109/TBME.2008.2005954.

Abstract

We present an assessment of the practical value of existing traditional and non-standard measures for discriminating healthy people from people with Parkinson's disease (PD) by detecting dysphonia. We introduce a new measure of dysphonia, Pitch Period Entropy (PPE), which is robust to many uncontrollable confounding effects including noisy acoustic environments and normal, healthy variations in voice frequency. We collected sustained phonations from 31 people, 23 with PD. We then selected 10 highly uncorrelated measures, and an exhaustive search of all possible combinations of these measures finds four that in combination lead to overall correct classification performance of 91.4%, using a kernel support vector machine. In conclusion, we find that non-standard methods in combination with traditional harmonics-to-noise ratios are best able to separate healthy from PD subjects. The selected non-standard methods are robust to many uncontrollable variations in acoustic environment and individual subjects, and are thus well-suited to telemonitoring applications.

摘要

我们通过检测发声障碍来评估现有传统和非标准测量方法在区分健康人与帕金森病(PD)患者方面的实用价值。我们引入了一种新的发声障碍测量方法,即基音周期熵(PPE),它对许多无法控制的混杂效应具有鲁棒性,包括嘈杂的声学环境以及语音频率的正常健康变化。我们收集了31人的持续发声,其中23人患有PD。然后我们选择了10个高度不相关的测量方法,通过对这些测量方法的所有可能组合进行详尽搜索,发现其中四种方法结合使用核支持向量机时,总体正确分类性能达到91.4%。总之,我们发现非标准方法与传统谐波噪声比相结合最能区分健康人和PD患者。所选的非标准方法对声学环境和个体受试者的许多无法控制的变化具有鲁棒性,因此非常适合远程监测应用。

相似文献

1
Suitability of dysphonia measurements for telemonitoring of Parkinson's disease.
IEEE Trans Biomed Eng. 2009 Apr;56(4):1015. doi: 10.1109/TBME.2008.2005954.
2
3
4
Voice disorder discrimination using vowel acoustic measures in female speakers.
Int J Lang Commun Disord. 2024 Sep-Oct;59(5):2087-2102. doi: 10.1111/1460-6984.13081. Epub 2024 Jun 17.
7
Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
Int J Lang Commun Disord. 2023 Mar;58(2):279-294. doi: 10.1111/1460-6984.12783. Epub 2022 Sep 18.
8
The Relationship Between Pitch Discrimination and Acoustic Voice Measures in a Cohort of Female Speakers.
J Voice. 2024 Sep;38(5):1023-1034. doi: 10.1016/j.jvoice.2022.02.015. Epub 2022 Mar 20.
9
A Study on Voice Measures in Patients with Parkinson's Disease.
J Voice. 2024 Jun 17. doi: 10.1016/j.jvoice.2024.05.018.
10
Non-invasive detection of Parkinson's disease based on speech analysis and interpretable machine learning.
Front Aging Neurosci. 2025 Apr 30;17:1586273. doi: 10.3389/fnagi.2025.1586273. eCollection 2025.

引用本文的文献

1
FanFAIR: sensitive data sets semi-automatic fairness assessment.
BMC Med Inform Decis Mak. 2025 Sep 12;25(Suppl 3):329. doi: 10.1186/s12911-025-03184-4.
3
6
Machine learning for Parkinson's disease: a comprehensive review of datasets, algorithms, and challenges.
NPJ Parkinsons Dis. 2025 Jul 1;11(1):187. doi: 10.1038/s41531-025-01025-9.
7
Hybrid preprocessing and ensemble classification for enhanced detection of Parkinson's disease using multiple speech signal databases.
Digit Health. 2025 Jun 26;11:20552076251352941. doi: 10.1177/20552076251352941. eCollection 2025 Jan-Dec.
8
Advanced comparative analysis of machine learning algorithms for early Parkinson's disease detection using vocal biomarkers.
Digit Health. 2025 Jun 6;11:20552076251342878. doi: 10.1177/20552076251342878. eCollection 2025 Jan-Dec.
9
Artificial Intelligence in the Diagnosis and Treatment of Speech Disorders: Bridging Neurology and Otorhinolaryngology.
Int Arch Otorhinolaryngol. 2025 May 29;29(2):1-2. doi: 10.1055/s-0045-1809334. eCollection 2025 Apr.
10
Non-invasive detection of Parkinson's disease based on speech analysis and interpretable machine learning.
Front Aging Neurosci. 2025 Apr 30;17:1586273. doi: 10.3389/fnagi.2025.1586273. eCollection 2025.

本文引用的文献

3
Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection.
Biomed Eng Online. 2007 Jun 26;6:23. doi: 10.1186/1475-925X-6-23.
4
Advances in the treatment of Parkinson's disease.
Prog Neurobiol. 2007 Jan;81(1):29-44. doi: 10.1016/j.pneurobio.2006.11.009. Epub 2007 Jan 25.
5
Complex network from pseudoperiodic time series: topology versus dynamics.
Phys Rev Lett. 2006 Jun 16;96(23):238701. doi: 10.1103/PhysRevLett.96.238701. Epub 2006 Jun 14.
6
Parametric quantitative acoustic analysis of conversation produced by speakers with dysarthria and healthy speakers.
J Speech Lang Hear Res. 2006 Apr;49(2):395-411. doi: 10.1044/1092-4388(2006/031).
7
Detecting chaos in pseudoperiodic time series without embedding.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016216. doi: 10.1103/PhysRevE.73.016216. Epub 2006 Jan 24.
8
Testing the assumptions of linear prediction analysis in normal vowels.
J Acoust Soc Am. 2006 Jan;119(1):549-58. doi: 10.1121/1.2141266.
9
Phonatory impairment in Parkinson's disease: evidence from nonlinear dynamic analysis and perturbation analysis.
J Voice. 2007 Jan;21(1):64-71. doi: 10.1016/j.jvoice.2005.08.011. Epub 2005 Dec 27.
10
Burden of illness in Parkinson's disease.
Mov Disord. 2005 Nov;20(11):1449-54. doi: 10.1002/mds.20609.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验