Suppr超能文献

过氧化物还原酶 I 的谷胱甘肽化诱导十聚体到二聚体的解离,同时丧失伴侣活性。

Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity.

机构信息

Laboratory of Biochemistry, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, United States.

出版信息

Biochemistry. 2011 Apr 19;50(15):3204-10. doi: 10.1021/bi101373h. Epub 2011 Mar 25.

Abstract

Reversible protein glutathionylation, a redox-sensitive regulatory mechanism, plays a key role in cellular regulation and cell signaling. Peroxiredoxins (Prxs), a family of peroxidases that is involved in removing H(2)O(2) and organic hydroperoxides, are known to undergo a functional change from peroxidase to molecular chaperone upon overoxidation of its catalytic cysteine. The functional change is caused by a structural change from low molecular weight oligomers to high molecular weight complexes that possess molecular chaperone activity. We reported earlier that Prx I can be glutathionylated at three of its cysteine residues, Cys52, -83, and -173 [Park et al. (2009) J. Biol. Chem., 284, 23364]. In this study, using analytical ultracentrifugation analysis, we reveal that glutathionylation of Prx I, WT, or its C52S/C173S double mutant shifted its oligomeric status from decamers to a population consisting mainly of dimers. Cys83 is localized at the putative dimer-dimer interface, implying that the redox status of Cys83 may play an important role in stabilizing the oligomeric state of Prx I. Studies with the Prx I (C83S) mutant show that while Cys83 is not essential for the formation of high molecular weight complexes, it affects the dimer-decamer equilibrium. Glutathionylation of the C83S mutant leads to accumulation of dimers and monomers. In addition, glutathionylation of Prx I, both the WT and C52S/C173S mutants, greatly reduces their molecular chaperone activity in protecting citrate synthase from thermally induced aggregation. Together, these results reveal that glutathionylation of Prx I promotes changes in its quaternary structure from decamers to smaller oligomers and concomitantly inactivates its molecular chaperone function.

摘要

蛋白质可逆谷胱甘肽化是一种氧化还原敏感的调节机制,在细胞调节和细胞信号转导中起着关键作用。过氧化物酶(Prx)是一种参与清除 H(2)O(2)和有机过氧化物的过氧化物酶家族,已知其催化半胱氨酸过度氧化后,其功能会从过氧化物酶转变为分子伴侣。这种功能变化是由结构从低分子量寡聚体转变为具有分子伴侣活性的高分子量复合物引起的。我们之前报道过 Prx I 可以在其三个半胱氨酸残基 Cys52、-83 和 -173 处发生谷胱甘肽化[Park 等人,(2009)J. Biol. Chem.,284,23364]。在这项研究中,我们使用分析超速离心分析揭示了 Prx I、WT 或其 C52S/C173S 双突变体的谷胱甘肽化将其寡聚状态从十聚体转变为主要由二聚体组成的群体。Cys83 位于假定的二聚体-二聚体界面处,这意味着 Cys83 的氧化还原状态可能在稳定 Prx I 的寡聚状态中发挥重要作用。对 Prx I(C83S)突变体的研究表明,虽然 Cys83 对于高分子量复合物的形成不是必需的,但它会影响二聚体-十聚体平衡。C83S 突变体的谷胱甘肽化导致二聚体和单体的积累。此外,Prx I、WT 和 C52S/C173S 突变体的谷胱甘肽化极大地降低了它们保护柠檬酸合酶免受热诱导聚集的分子伴侣活性。总之,这些结果表明,Prx I 的谷胱甘肽化促进其四级结构从十聚体向较小的寡聚体转变,并同时使其分子伴侣功能失活。

相似文献

1
Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity.
Biochemistry. 2011 Apr 19;50(15):3204-10. doi: 10.1021/bi101373h. Epub 2011 Mar 25.
4
Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis.
J Mol Biol. 2013 Nov 15;425(22):4556-68. doi: 10.1016/j.jmb.2013.09.002. Epub 2013 Sep 8.
6
Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin.
J Biol Chem. 2009 Aug 28;284(35):23364-74. doi: 10.1074/jbc.M109.021394. Epub 2009 Jun 27.
7
Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer.
J Biol Chem. 2006 Oct 20;281(42):31736-42. doi: 10.1074/jbc.M602188200. Epub 2006 Aug 17.
8
The 1-Cys peroxiredoxin, a regulator of seed dormancy, functions as a molecular chaperone under oxidative stress conditions.
Plant Sci. 2011 Aug;181(2):119-24. doi: 10.1016/j.plantsci.2011.04.010. Epub 2011 Apr 30.
9
Structural and biochemical analyses reveal ubiquitin C-terminal hydrolase-L1 as a specific client of the peroxiredoxin II chaperone.
Arch Biochem Biophys. 2018 Feb 15;640:61-74. doi: 10.1016/j.abb.2018.01.003. Epub 2018 Jan 12.
10
An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone.
FEBS Lett. 2015 Sep 14;589(19 Pt B):2831-40. doi: 10.1016/j.febslet.2015.07.046. Epub 2015 Aug 13.

引用本文的文献

2
The ascorbate-glutathione cycle coming of age.
J Exp Bot. 2024 May 3;75(9):2682-2699. doi: 10.1093/jxb/erae023.
5
Biophysical tools to study the oligomerization dynamics of Prx1-class peroxiredoxins.
Biophys Rev. 2023 Jun 15;15(4):601-609. doi: 10.1007/s12551-023-01076-3. eCollection 2023 Aug.
6
Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress.
Antioxidants (Basel). 2021 Jun 18;10(6):977. doi: 10.3390/antiox10060977.
7
Function and Regulation of Chloroplast Peroxiredoxin IIE.
Antioxidants (Basel). 2021 Jan 21;10(2):152. doi: 10.3390/antiox10020152.
9
Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation.
Front Aging Neurosci. 2020 Sep 3;12:254. doi: 10.3389/fnagi.2020.00254. eCollection 2020.
10
CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress.
Life Sci Alliance. 2020 Jul 30;3(9). doi: 10.26508/lsa.202000775. Print 2020 Sep.

本文引用的文献

1
Diffusion of the reaction boundary of rapidly interacting macromolecules in sedimentation velocity.
Biophys J. 2010 Jun 2;98(11):2741-51. doi: 10.1016/j.bpj.2010.03.004.
3
Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin.
J Biol Chem. 2009 Aug 28;284(35):23364-74. doi: 10.1074/jbc.M109.021394. Epub 2009 Jun 27.
4
Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II.
J Biol Chem. 2009 May 15;284(20):13455-13465. doi: 10.1074/jbc.M900641200. Epub 2009 Mar 13.
5
Protein S-glutathionylation: a regulatory device from bacteria to humans.
Trends Biochem Sci. 2009 Feb;34(2):85-96. doi: 10.1016/j.tibs.2008.11.002. Epub 2009 Jan 8.
6
Molecular mechanisms and clinical implications of reversible protein S-glutathionylation.
Antioxid Redox Signal. 2008 Nov;10(11):1941-88. doi: 10.1089/ars.2008.2089.
7
Glutaredoxin systems.
Biochim Biophys Acta. 2008 Nov;1780(11):1304-17. doi: 10.1016/j.bbagen.2008.06.003. Epub 2008 Jun 18.
9
Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation.
J Biol Chem. 2007 Nov 9;282(45):32640-54. doi: 10.1074/jbc.M702294200. Epub 2007 Sep 11.
10
Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease.
Neuron. 2007 Jul 5;55(1):37-52. doi: 10.1016/j.neuron.2007.05.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验