CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3004-143, Coimbra, Portugal.
Redox Biol. 2024 Feb;69:103000. doi: 10.1016/j.redox.2023.103000. Epub 2023 Dec 21.
In the cytosol of human cells under low oxidative loads, hydrogen peroxide is confined to microdomains around its supply sites, due to its fast consumption by peroxiredoxins. So are the sulfenic and disulfide forms of the 2-Cys peroxiredoxins, according to a previous theoretical analysis [Travasso et al., Redox Biology 15 (2017) 297]. Here, an extended reaction-diffusion model that for the first time considers the differential properties of human peroxiredoxins 1 and 2 and the thioredoxin redox cycle predicts important new aspects of the dynamics of redox microdomains. The peroxiredoxin 1 sulfenates and disulfides are more localized than the corresponding peroxiredoxin 2 forms, due to the former peroxiredoxin's faster resolution step. The thioredoxin disulfides are also localized. As the HO supply rate (v) approaches and then surpasses the maximal rate of the thioredoxin/thioredoxin reductase system (V), these concentration gradients become shallower, and then vanish. At low v the peroxiredoxin concentration determines the HO concentrations and gradient length scale, but as v approaches V, the thioredoxin reductase activity gains influence. A differential mobility of peroxiredoxin disulfide dimers vs. reduced decamers enhances the redox polarity of the cytosol: as v approaches V, reduced decamers are preferentially retained far from HO sources, attenuating the local HO buildup. Substantial total protein concentration gradients of both peroxiredoxins emerge under these conditions, and the concentration of reduced peroxiredoxin 1 far from the HO sources even increases with v. Altogether, the properties of 2-Cys peroxiredoxins and thioredoxin are such that localized HO supply induces a redox and functional polarization between source-proximal regions (redox microdomains) that facilitate peroxiredoxin-mediated signaling and distal regions that maximize antioxidant protection.
在低氧化应激负载下的人类细胞胞质溶胶中,由于过氧化物酶体的快速消耗,过氧化氢被限制在其供应点周围的微区中。根据之前的理论分析[ Travasso 等人,Redox Biology 15 (2017) 297],2-Cys 过氧化物酶的亚磺酸和二硫化物形式也是如此。在这里,一个扩展的反应-扩散模型首次考虑了人过氧化物酶 1 和 2 的差异特性以及硫氧还蛋白氧化还原循环,预测了氧化还原微区动力学的重要新方面。由于前者过氧化物酶的分辨率步骤更快,过氧化物酶 1 的亚磺酸盐和二硫化物比相应的过氧化物酶 2 形式更局限。硫氧还蛋白二硫化物也局限化。随着 HO 供应速率(v)接近并超过硫氧还蛋白/硫氧还蛋白还原酶系统(V)的最大速率,这些浓度梯度变得更浅,然后消失。在低 v 时,过氧化物酶的浓度决定了 HO 的浓度和梯度长度尺度,但随着 v 接近 V,硫氧还蛋白还原酶的活性会产生影响。过氧化物酶二硫化物二聚体与还原十聚体的差分迁移率增强了胞质溶胶的氧化还原极性:随着 v 接近 V,还原十聚体优先保留在远离 HO 源的地方,从而减弱局部 HO 的积累。在这些条件下,两种过氧化物酶的总蛋白浓度梯度都很大,甚至远离 HO 源的还原过氧化物酶 1 的浓度也随着 v 的增加而增加。总之,2-Cys 过氧化物酶和硫氧还蛋白的特性是,局部的 HO 供应诱导了源附近区域(氧化还原微区)与促进过氧化物酶介导的信号传递的近源区域和最大限度地抗氧化保护的远源区域之间的氧化还原和功能极化。