Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
FASEB J. 2011 Jul;25(7):2234-44. doi: 10.1096/fj.10-178673. Epub 2011 Mar 14.
We report how rotational variations in transmembrane (TM) helix interactions participate in the activity states of the thrombopoietin receptor (TpoR), a type 1 cytokine receptor that controls the production of blood platelets. We also explore the mechanism of small-molecule agonists that do not mimic the natural ligand. We show, by a combination of cysteine cross-linking, alanine-scanning mutagenesis, and computational simulations, that the TpoR TM dimerizes strongly and can adopt 3 different stable, rotationally related conformations, which may correspond to specific states of the full-length receptor (active, inactive, and partially active). Thus, our data suggest that signaling and inactive states of the receptor are related by receptor subunit rotations, rather than a simple monomer-dimer transition. Moreover, results from experiments with and without agonists in vitro and in cells allow us to propose a novel allosteric mechanism of action for a class of small molecules, in which they activate TpoR by binding to the TM region and by exploiting the rotational states of the dimeric receptor. Overall, our results support the emerging view of the participation of mutual rotations of the TM domains in cytokine receptor activation.
我们报告了跨膜(TM)螺旋相互作用的旋转变化如何参与血小板生成素受体(TpoR)的活性状态,TpoR 是一种 1 型细胞因子受体,控制着血小板的产生。我们还探讨了不模拟天然配体的小分子激动剂的作用机制。通过半胱氨酸交联、丙氨酸扫描突变和计算模拟的组合,我们表明 TpoR TM 二聚体强烈,并且可以采用 3 种不同的稳定、旋转相关构象,这可能对应于全长受体的特定状态(活性、无活性和部分活性)。因此,我们的数据表明,受体的信号转导和无活性状态与受体亚基的旋转有关,而不是简单的单体-二聚体转变。此外,体外和细胞内有无激动剂实验的结果使我们能够提出一类小分子的新型变构作用机制,它们通过结合 TM 区域并利用二聚体受体的旋转状态来激活 TpoR。总的来说,我们的结果支持了 TM 结构域的相互旋转参与细胞因子受体激活的新观点。