Physics of Fluids Group, Faculty of Science and Technology, Impact and Mesa Institutes & Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands.
Phys Rev Lett. 2011 Jan 14;106(2):024502. doi: 10.1103/PhysRevLett.106.024502. Epub 2011 Jan 10.
We analyze the global transport properties of turbulent Taylor-Couette flow in the strongly turbulent regime for independently rotating outer and inner cylinders, reaching Reynolds numbers of the inner and outer cylinders of Re(i) = 2×10(6) and Re(o) = ±1.4×10(6), respectively. For all Re(i), Re(o), the dimensionless torque G scales as a function of the Taylor number Ta (which is proportional to the square of the difference between the angular velocities of the inner and outer cylinders) with a universal effective scaling law G ∝ Ta(0.88), corresponding to Nu(ω) ∝ Ta(0.38) for the Nusselt number characterizing the angular velocity transport between the inner and outer cylinders. The exponent 0.38 corresponds to the ultimate regime scaling for the analogous Rayleigh-Bénard system. The transport is most efficient for the counterrotating case along the diagonal in phase space with ω(o) ≈ -0.4ω(i).
我们分析了内外筒独立旋转时强湍流区泰勒-库埃特流动的全局输运性质,达到了内筒和外筒的雷诺数 Re(i)=2×10(6)和 Re(o)=±1.4×10(6)。对于所有 Re(i)、Re(o),无量纲扭矩 G 作为泰勒数 Ta 的函数进行缩放(Ta 与内外筒角速度差的平方成正比),具有通用的有效缩放律 G∝Ta(0.88),对应的努塞尔数 Nu(ω)∝Ta(0.38),用于描述内外筒角速度输运。该指数 0.38 对应于类似的瑞利-贝纳德系统的最终状态标度。对于ω(o)≈-0.4ω(i)的对角反旋转情况,输运效率最高,处于相空间中。