Suppr超能文献

利用临床试验数据大大缩小了多尺度癌症模型临床适应问题的可能解决方案的范围。

Exploiting clinical trial data drastically narrows the window of possible solutions to the problem of clinical adaptation of a multiscale cancer model.

机构信息

In Silico Oncology Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.

出版信息

PLoS One. 2011 Mar 3;6(3):e17594. doi: 10.1371/journal.pone.0017594.

Abstract

The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/GPOH clinical trial. A sorting of the model's parameters according to the magnitude of their effect on the output has unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-induced tumor shrinkage and on the tumor's growth rate are discussed. A real clinical case of nephroblastoma has served as a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of possible solutions to the clinical adaptation problem.

摘要

在过去的几十年中,用于模拟肿瘤生长和对治疗的反应的计算模型的发展取得了重大进展。在个性化医学时代的曙光下,深入了解癌症涉及的复杂机制并促进针对患者的治疗优化构成了特别鼓舞人心的追求。计算机肿瘤学界面临着将模拟模型有效转化为临床实践的巨大挑战,这需要根据真实的临床数据进行彻底的敏感性分析、适应和验证过程。在本文中,我们研究了一种针对临床的、多尺度的实体瘤对化疗反应的模型的行为,该模型以 SIOP/GPOH 临床试验中肾母细胞瘤对术前化疗的反应为例。根据参数对输出的影响程度对模型的参数进行排序,揭示了相应生物学机制的相对重要性;对治疗结果影响最大的是肿瘤的氧合和营养供应状态以及干细胞分裂的对称和不对称模式之间的平衡。讨论了许多参数组合对化疗引起的肿瘤缩小程度和肿瘤生长速度的影响。一个肾母细胞瘤的真实临床病例被用作原理验证研究病例,演示了正在进行的临床适应和验证过程的基础。通过将临床数据与模型参数的合理值结合使用,模型在体积减少和肿瘤的组织学构成方面与选定的肾母细胞瘤病例的可用医学数据非常吻合。在这种情况下,利用多尺度临床数据极大地缩小了临床适应问题的可能解决方案的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b5b/3048172/db4498a88cb9/pone.0017594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验