Stamatakos Georgios S, Kolokotroni Eleni, Dionysiou Dimitra, Veith Christian, Kim Yoo-Jin, Franz Astrid, Marias Kostas, Sabczynski Joerg, Bohle Rainer, Graf Norbert
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5545-9. doi: 10.1109/EMBC.2013.6610806.
This paper presents a brief outline of the notion and the system of oncosimulator in conjunction with a high level description of the basics of its core multiscale model simulating clinical tumor response to treatment. The exemplary case of lung cancer preoperatively treated with a combination of chemotherapeutic agents is considered. The core oncosimulator model is based on a primarily top-down, discrete entity - discrete event multiscale simulation approach. The critical process of clinical adaptation of the model by exploiting sets of multiscale data originating from clinical studies/trials is also outlined. Concrete clinical adaptation results are presented. The adaptation process also conveys important aspects of the planned clinical validation procedure since the same type of multiscale data - although not the same data itself- is to be used for clinical validation. By having exploited actual clinical data in conjunction with plausible literature-based values of certain model parameters, a realistic tumor dynamics behavior has been demonstrated. The latter supports the potential of the specific oncosimulator to serve as a personalized treatment optimizer following an eventually successful completion of the clinical adaptation and validation process.
本文简要概述了肿瘤模拟器的概念和系统,并对其核心多尺度模型的基础进行了高层次描述,该模型用于模拟临床肿瘤对治疗的反应。文中考虑了术前采用化疗药物联合治疗肺癌的示例病例。核心肿瘤模拟器模型主要基于自上而下的离散实体-离散事件多尺度模拟方法。本文还概述了通过利用来自临床研究/试验的多尺度数据集对模型进行临床适配的关键过程,并展示了具体的临床适配结果。由于将使用相同类型的多尺度数据(尽管不是相同的数据本身)进行临床验证,因此适配过程也传达了计划中的临床验证程序的重要方面。通过结合实际临床数据和某些基于文献的合理模型参数值,已证明了逼真的肿瘤动力学行为。这支持了特定肿瘤模拟器在临床适配和验证过程最终成功完成后作为个性化治疗优化器的潜力。