Suppr超能文献

虹彩吸蜜鹦鹉(Zenaida macroura)羽毛水合作用和脱水后的结构颜色变化。

Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers.

机构信息

Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA.

出版信息

Zoology (Jena). 2011 Apr;114(2):59-68. doi: 10.1016/j.zool.2010.11.001. Epub 2011 Mar 15.

Abstract

Dynamic changes in integumentary color occur in cases as diverse as the neurologically controlled iridiphores of cephalopod skin and the humidity-responsive cuticles of longhorn beetles. By contrast, feather colors are generally assumed to be relatively static, changing by small amounts only over periods of months. However, this assumption has rarely been tested even though structural colors of feathers are produced by ordered nanostructures that are analogous to those in the aforementioned dynamic systems. Feathers are neither innervated nor vascularized and therefore any color change must be caused by external stimuli. Thus, we here explore how feathers of iridescent mourning doves Zenaida macroura respond to a simple stimulus: addition and evaporation of water. After three rounds of experimental wetting and subsequent evaporation, iridescent feather color changed hue, became more chromatic and increased in overall reflectance by almost 50%. To understand the mechanistic basis of this change, we used electron microscopy to examine macro- and nanostructures before and after treatment. Transmission electron microscopy and transfer matrix thin-film models revealed that color is produced by thin-film interference from a single (∼ 35 nm layer of keratin around the edge of feather barbules, beneath which lies a layer of air and melanosomes. After treatment, the most striking morphological difference was a twisting of colored barbules that exposed more of their surface area for reflection, explaining the observed increase in brightness. These results suggest that some plumage colors may be more malleable than previously thought, leading to new avenues for research on dynamic plumage color.

摘要

皮肤中的神经控制的虹彩细胞和长角甲虫的湿度响应的角质层等多种情况下都会发生表皮颜色的动态变化。相比之下,羽毛颜色通常被认为是相对静态的,只有在几个月的时间内才会发生少量变化。然而,即使羽毛的结构颜色是由类似于上述动态系统中的有序纳米结构产生的,这种假设也很少得到检验。羽毛既没有神经支配也没有血管化,因此任何颜色变化都必须由外部刺激引起。因此,我们在这里探讨彩虹鸽(Zenaida macroura)的羽毛如何对一个简单的刺激做出反应:加水和蒸发水。经过三轮的实验润湿和随后的蒸发,虹彩羽毛的颜色改变了色调,变得更加鲜艳,整体反射率增加了近 50%。为了了解这种变化的机制基础,我们使用电子显微镜检查处理前后的宏观和微观结构。透射电子显微镜和传递矩阵薄膜模型显示,颜色是由单层(约 35nm 厚的角蛋白层在羽小枝边缘产生的薄膜干涉产生的,其下是一层空气和黑素体。处理后,最显著的形态差异是有色羽小枝的扭曲,暴露出更多的表面进行反射,解释了观察到的亮度增加。这些结果表明,一些羽毛颜色可能比以前想象的更具可塑性,为动态羽毛颜色的研究开辟了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验