Suppr超能文献

文献中的化合物 (CIL):在 PubMed 中筛选化合物和相关物。

Compounds In Literature (CIL): screening for compounds and relatives in PubMed.

机构信息

Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany.

出版信息

Bioinformatics. 2011 May 1;27(9):1341-2. doi: 10.1093/bioinformatics/btr130. Epub 2011 Mar 16.

Abstract

SUMMARY

Searching for certain compounds in literature can be an elaborate task, with many compounds having several different synonyms. Often, only the structure is known but not its name. Furthermore, rarely investigated compounds may not be described in the available literature at all. In such cases, preceding searches for described similar compounds facilitate literature mining. Highlighted names of proteins in selected texts may further accelerate the time-consuming process of literary research. Compounds In Literature (CIL) provides a web interface to automatically find names, structures, and similar structures in over 28 million compounds of PubChem and more than 18 million citations provided by the PubMed service. CIL's pre-calculated database contains more than 56 million parent compound-abstract relations. Found compounds, relatives and abstracts are related to proteins in a concise 'heat map'-like overview. Compounds and proteins are highlighted in their respective abstracts, and are provided with links to PubChem and UniProt.

AVAILABILITY

An easy-to-use web interface with detailed descriptions, help and statistics is available from http://cil.pharmaceutical-bioinformatics.de.

CONTACT

stefan.guenther@pharmazie.uni-freiburg.de.

摘要

摘要

在文献中搜索某些化合物可能是一项繁琐的任务,因为许多化合物有几个不同的同义词。通常,只知道结构而不知道名称。此外,很少研究的化合物可能根本没有在可用的文献中描述。在这种情况下,之前对已描述的类似化合物的搜索有助于文献挖掘。在选定的文本中突出显示蛋白质的名称可以进一步加快耗时的文献研究过程。文献中的化合物 (CIL) 提供了一个网络界面,可自动查找 PubChem 中超过 2800 万种化合物的名称、结构和类似结构,以及由 PubMed 服务提供的 1800 多万条引文。CIL 预先计算的数据库包含超过 5600 万个母体化合物-摘要关系。找到的化合物、相关化合物和摘要以简洁的“热图”式概览与蛋白质相关联。化合物和蛋白质在各自的摘要中突出显示,并提供了到 PubChem 和 UniProt 的链接。

可用性

可从 http://cil.pharmaceutical-bioinformatics.de 获得易于使用的网络界面,其中包含详细的说明、帮助和统计信息。

联系人

stefan.guenther@pharmazie.uni-freiburg.de

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验