Suppr超能文献

利用行政索赔和医疗记录来确定乳腺癌患者使用个性化药物的权衡。

Tradeoffs of using administrative claims and medical records to identify the use of personalized medicine for patients with breast cancer.

机构信息

Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, CA 94143, USA.

出版信息

Med Care. 2011 Jun;49(6):e1-8. doi: 10.1097/MLR.0b013e318207e87e.

Abstract

BACKGROUND

Administrative claims and medical records are important data sources to examine healthcare utilization and outcomes. Little is known about identifying personalized medicine technologies in these sources.

OBJECTIVES

To describe agreement, sensitivity, and specificity of administrative claims compared with medical records for 2 pairs of targeted tests and treatments for breast cancer.

RESEARCH DESIGN

Retrospective analysis of medical records linked to administrative claims from a large health plan. We examined whether agreement varied by factors that facilitate tracking in claims (coding and cost) and that enhance medical record completeness (records from multiple providers).

SUBJECTS

Women (35 to 65 y of age) with incident breast cancer diagnosed in 2006 to 2007 (n=775).

MEASURES

Use of human epidermal growth factor receptor 2 (HER2) and gene expression profiling (GEP) testing, trastuzumab, and adjuvant chemotherapy in claims and medical records.

RESULTS

Agreement between claims and records was substantial for GEP, trastuzumab, and chemotherapy, and lowest for HER2 tests. GEP, an expensive test with unique billing codes, had higher agreement (91.6% vs. 75.2%), sensitivity (94.9% vs. 76.7%), and specificity (90.1% vs. 29.2%) than HER2, a test without unique billing codes. Trastuzumab, a treatment with unique billing codes, had slightly higher agreement (95.1% vs. 90%) and sensitivity (98.1% vs. 87.9%) than adjuvant chemotherapy.

CONCLUSIONS

Higher agreement and specificity were associated with services that had unique billing codes and high cost. Administrative claims may be sufficient for examining services with unique billing codes. Medical records provide better data for identifying tests lacking specific codes and for research requiring detailed clinical information.

摘要

背景

行政索赔和医疗记录是检查医疗保健利用和结果的重要数据来源。对于如何在这些来源中识别个性化医疗技术,人们知之甚少。

目的

描述行政索赔与医疗记录在 2 对乳腺癌靶向检测和治疗方法中的一致性、敏感性和特异性。

研究设计

对大型健康计划的行政索赔与医疗记录进行的回顾性分析。我们检查了索赔中便于跟踪的因素(编码和成本)和提高医疗记录完整性的因素(来自多个提供者的记录)是否会影响一致性。

研究对象

2006 年至 2007 年诊断为乳腺癌的 35 至 65 岁女性(n=775)。

测量指标

索赔和记录中的人表皮生长因子受体 2(HER2)和基因表达谱(GEP)检测、曲妥珠单抗和辅助化疗的使用情况。

结果

在索赔和记录中,GEP、曲妥珠单抗和化疗的一致性很高,而 HER2 测试的一致性最低。昂贵的 GEP 测试具有独特的计费代码,因此具有更高的一致性(91.6%比 75.2%)、敏感性(94.9%比 76.7%)和特异性(90.1%比 29.2%),而没有独特计费代码的 HER2 测试则不然。具有独特计费代码的曲妥珠单抗治疗方法的一致性(95.1%比 90%)和敏感性(98.1%比 87.9%)略高于辅助化疗。

结论

更高的一致性和特异性与具有独特计费代码和高成本的服务相关。行政索赔可能足以检查具有独特计费代码的服务。医疗记录为识别缺乏特定代码的测试以及需要详细临床信息的研究提供了更好的数据。

相似文献

2
Utilization of genetic tests: analysis of gene-specific billing in Medicare claims data.
Genet Med. 2017 Aug;19(8):890-899. doi: 10.1038/gim.2016.209. Epub 2017 Jan 26.
3
Administrative and claims records as sources of health care cost data.
Med Care. 2009 Jul;47(7 Suppl 1):S51-5. doi: 10.1097/MLR.0b013e31819c95aa.
4
Quality of hospital discharge and physician data for type of breast cancer surgery.
Med Care. 2000 Jan;38(1):99-107. doi: 10.1097/00005650-200001000-00011.
6
Administrative data identify sickle cell disease: A critical review of approaches in U.S. health services research.
Pediatr Blood Cancer. 2020 Dec;67(12):e28703. doi: 10.1002/pbc.28703. Epub 2020 Sep 17.
8
Genomic testing and therapies for breast cancer in clinical practice.
Am J Manag Care. 2011 May 1;17(5 Spec No):e174-81.
10
Utility of administrative claims data for the study of brain metastases: a validation study.
J Neurooncol. 2009 Dec;95(3):427-431. doi: 10.1007/s11060-009-9943-z. Epub 2009 Jun 27.

引用本文的文献

2
Measuring the Direct Medical Costs of Hospital-Onset Infections Using an Analogy Costing Framework.
Pharmacoeconomics. 2024 Oct;42(10):1127-1144. doi: 10.1007/s40273-024-01400-z. Epub 2024 Jul 5.
4
Exploration of PCORnet Data Resources for Assessing Use of Molecular-Guided Cancer Treatment.
JCO Clin Cancer Inform. 2020 Aug;4:724-735. doi: 10.1200/CCI.19.00142.
7
Validity of Administrative Databases in Comparison to Medical Charts for Breast Cancer Treatment Data.
J Cancer Epidemiol. 2018 May 14;2018:9218595. doi: 10.1155/2018/9218595. eCollection 2018.
8
A feasibility study to assess the validity of administrative data sources and self-reported information of breast cancer survivors.
Isr J Health Policy Res. 2016 Dec 1;5:50. doi: 10.1186/s13584-016-0111-6. eCollection 2016.
9
First do no harm: population-based study shows non-evidence-based trastuzumab prescription may harm elderly women with breast cancer.
Breast Cancer Res Treat. 2014 Apr;144(2):417-25. doi: 10.1007/s10549-014-2874-1. Epub 2014 Feb 21.
10
Intended versus inferred care after PET performed for initial staging in the National Oncologic PET Registry.
J Nucl Med. 2013 Dec;54(12):2024-31. doi: 10.2967/jnumed.113.123430. Epub 2013 Nov 12.

本文引用的文献

2
Sensitivity of administrative claims to identify incident cases of lung cancer: a comparison of 3 health plans.
J Manag Care Pharm. 2009 Oct;15(8):659-68. doi: 10.18553/jmcp.2009.15.8.659.
3
External validation of a claims-based algorithm for classifying kidney-cancer surgeries.
BMC Health Serv Res. 2009 Jun 6;9:92. doi: 10.1186/1472-6963-9-92.
6
Evaluation of claims, medical records, and self-report for measuring fecal occult blood testing among medicare enrollees in fee for service.
Cancer Epidemiol Biomarkers Prev. 2008 Apr;17(4):799-804. doi: 10.1158/1055-9965.EPI-07-2620. Epub 2008 Apr 1.
7
Data sources for measuring colorectal endoscopy use among Medicare enrollees.
Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):2118-27. doi: 10.1158/1055-9965.EPI-07-0123.
8
Evaluation of three algorithms to identify incident breast cancer in Medicare claims data.
Health Serv Res. 2007 Oct;42(5):2056-69. doi: 10.1111/j.1475-6773.2007.00705.x.
9
Agreement of diagnosis and its date for hematologic malignancies and solid tumors between medicare claims and cancer registry data.
Cancer Causes Control. 2007 Jun;18(5):561-9. doi: 10.1007/s10552-007-0131-1. Epub 2007 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验