Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
Département de médecine sociale et préventive, École de santé publique, Université de Montréal, Montréal, Québec, Canada.
Can J Public Health. 2024 Oct;115(5):770-783. doi: 10.17269/s41997-024-00915-4. Epub 2024 Jul 31.
This study aimed to summarize validity estimates of International Classification of Diseases (ICD) codes in identifying opioid overdose (OOD) among patient data from emergency rooms, emergency medical services, inpatient, outpatient, administrative, medical claims, and mortality, and estimate the sensitivity and specificity of the algorithms in the absence of a perfect reference standard.
We systematically reviewed studies published before December 8, 2023, and identified with Medline and Embase. Studies reporting sufficient details to recreate a 2 × 2 table comparing the ICD algorithms to a reference standard in diagnosing OOD-related events were included. We used Bayesian latent class models (BLCM) to estimate the posterior sensitivity and specificity distributions of five ICD-10 algorithms and of the imperfect coroner's report review (CRR) in detecting prescription opioid-related deaths (POD) using one included study.
Of a total of 1990 studies reviewed, three were included. The reported sensitivity estimates of ICD algorithms for OOD were low (range from 25.0% to 56.8%) for ICD-9 in diagnosing non-fatal OOD-related events and moderate (72% to 89%) for ICD-10 in diagnosing POD. The last included study used ICD-9 for non-fatal and fatal and ICD-10 for fatal OOD-related events and showed high sensitivity (i.e. above 97%). The specificity estimates of ICD algorithms were good to excellent in the three included studies. The misclassification-adjusted ICD-10 algorithm sensitivity estimates for POD from BLCM were consistently higher than reported sensitivity estimates that assumed CRR was perfect.
Evidence on the performance of ICD algorithms in detecting OOD events is scarce, and the absence of bias correction for imperfect tests leads to an underestimation of the sensitivity of ICD code estimates.
本研究旨在总结国际疾病分类(ICD)代码在识别急诊科、急救医疗服务、住院、门诊、行政、医疗索赔和死亡率患者数据中阿片类药物过量(OOD)的有效性估计,并在缺乏完美参考标准的情况下估计算法的敏感性和特异性。
我们系统地回顾了截至 2023 年 12 月 8 日之前发表的研究,并通过 Medline 和 Embase 进行了识别。纳入了报告了足够详细信息以重现比较 ICD 算法与参考标准诊断 OOD 相关事件的 2×2 表的研究。我们使用贝叶斯潜在类别模型(BLCM)来估计五个 ICD-10 算法和不完善的验尸官报告审查(CRR)在使用一项纳入研究检测处方类阿片药物相关死亡(POD)中的后验敏感性和特异性分布。
在总共审查的 1990 项研究中,有三项研究被纳入。报告的 ICD 算法对 OOD 的敏感性估计值较低(ICD-9 诊断非致命性 OOD 相关事件的范围为 25.0%至 56.8%,ICD-10 诊断 POD 的范围为 72%至 89%)。最后一项纳入的研究使用 ICD-9 用于非致命和致命以及 ICD-10 用于致命 OOD 相关事件,表现出高敏感性(即高于 97%)。在这三项纳入的研究中,ICD 算法的特异性估计值较好到极好。BLCM 对 POD 的 ICD-10 算法的校正错误分类敏感性估计值始终高于假设 CRR 完美的报告敏感性估计值。
关于 ICD 算法在检测 OOD 事件中的性能的证据很少,并且对不完美测试的缺乏偏差校正会导致对 ICD 代码估计敏感性的低估。