Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
Future Med Chem. 2009 Apr;1(1):119-35. doi: 10.4155/fmc.09.10.
β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD.
A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism.
Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
β-淀粉样蛋白沉积和氧化应激被认为是阿尔茨海默病(AD)的根本原因。目前,治疗 AD 的潜在治疗策略包括抑制淀粉样β(Aβ)的产生、刺激 Aβ的降解以及预防 Aβ的寡聚化。然而,由于缺乏对 AD 中原子水平上发生的生化过程的理解,这方面的努力受到了阻碍。
实现这一目标的一种截然不同的方法是应用综合的理论和计算技术,如分子动力学、量子力学、混合量子力学/分子力学、生物信息学和旋转光谱学,以研究β-淀粉样蛋白沉积和氧化应激机制中的复杂化学和物理过程。
这些研究的结果将提供对 AD 中发生的生化过程的原子水平理解,并推进为这种疾病开发有效治疗策略的努力。