Huang Yao, Fu Jun-fen, Shi Hong-bo, Liu Li-rui
Endocrinology Department, Children Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
Zhonghua Er Ke Za Zhi. 2011 Feb;49(2):139-45.
To investigate the potential preventive effects of metformin on non-alcoholic fatty liver disease (NAFLD) and roles of phospholipase A2/lysophosphatidylcholine pathway in hepatocyte lipoapoptosis in a rat NAFLD model induced by high-fat diet.
Male SD rats (n = 36) were randomly divided into three groups with 12 rats in each and treated with different diet and drugs: group I: ordinary diet, group II: high-fat diet, group III: high-fat diet and metformin. Ten weeks later, the rats were sacrificed and their body weight and liver weight were obtained, serum lipid metabolic indexes, insulin resistance indexes and secretory phospholipase A2 (sPLA2), lysophosphatidylcholine (LPC) levels and other parameters were measured. Phospholipase A2 mRNA expression levels were measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR). In addition, the histological changes of liver tissue were analyzed.
Compared to ordinary diet group, the rat's liver weight (g) (16.92 ± 2.49 vs. 12.16 ± 0.82), hepatic exponent (0.034 ± 0.004 vs. 0.026 ± 0.002), serum alanine aminotransferase (U/L) (45.43 ± 9.73 vs. 29.42 ± 6.73), triglyceride (mmol/L) (1.22 ± 0.24 vs. 0.85 ± 0.19), cholesterol (mmol/L) (2.00 ± 0.37 vs. 1.49 ± 0.33), lipoprotein(a) (mmol/L) (743.86 ± 32.19 vs. 648.42 ± 78.87), low-density lipoprotein (mmol/L) (1.31 ± 0.35 vs. 0.65 ± 0.22), insulin (mmol/L) (22.16 ± 5.16 vs. 16.86 ± 5.35), insulin resistance index(5.10 ± 1.45 vs. 3.59 ± 0.99), free fatty acid (mEq/L) (0.57 ± 0.10 vs. 0.35 ± 0.07), sPLA2 [µmol/(min·ml)] (0.130 ± 0.016 vs. 0.098 ± 0.024), lysophosphatidylcholine (µmol/L) (707.26 ± 92.48 vs. 508.87 ± 96.50), leptin (pg/ml (80.08 ± 17.73 vs. 65.11 ± 14.09), liver triglyceride (mg/g) (13.57 ± 0.65 vs. 12.03 ± 1.14), cholesterol (mg/g) (2.19 ± 0.15 vs. 1.94 ± 0.12) (P < 0.05) were significantly increased in high-fat diet group. Moreover, degree of hepatic steatosis was significantly higher and sPLA2 mRNA expression was also significantly increased. Secondly, in comparison with high-fat diet group, early metformin treatment significantly reduced the rat's body weight (g) (394.40 ± 33.10 vs. 491.86 ± 26.45), liver weight (g) (13.24 ± 1.16 vs. 16.92 ± 2.49), serum alanine aminotransferase (U/L) (30.40 ± 4.50 vs. 45.43 ± 9.73), triglyceride (mmol/L) (0.75 ± 0.19 vs. 1.22 ± 0.24), cholesterol (mmol/L) (1.61 ± 0.38 vs. 2.00 ± 0.37), insulin (mmol/L) (16.96 ± 5.60 vs. 22.16 ± 5.16), insulin resistance index (3.75 ± 1.41 vs. 5.10 ± 1.45), sPLA2 [µmol/(min·ml)] (0.101 ± 0.009 vs. 0.130 ± 0.016), lysophosphatidylcholine (µmol/L) (549.92 ± 90.78 vs. 707.26 ± 92.48), liver triglyceride (mg/g) (11.23 ± 1.70 vs. 13.57 ± 0.65), cholesterol (mg/g) (1.97 ± 0.20 vs. 2.19 ± 0.15) (P < 0.05). Moreover, degree of hepatic steatosis was significantly lower and sPLA2 mRNA expression was also significantly decreased by metformin. Thirdly, when compared to ordinary diet group, metformin could also significantly increase hepatic exponent (0.034 ± 0.004 vs. 0.026 ± 0.002) and low-density lipoprotein level (mmol/L) (0.96 ± 0.34 vs. 0.65 ± 0.22) (P < 0.05). However, it had no impact on hepatic steatosis and sPLA2 expression (P > 0.05).
It was indicated that metformin has potent effects on improving lipid metabolism and insulin resistance in high-fat diet induced non-alcoholic fatty liver disease rat model. The liver protective mechanisms of metformin in non-alcoholic fatty liver disease may be contributed to down-regulation of secretory phospholipase A2 mRNA expression, decrease in serum secretory phospholipase A2, lysophosphatidylcholine, lower inflammatory response and protect mitochondrial function.
在高脂饮食诱导的大鼠非酒精性脂肪性肝病(NAFLD)模型中,研究二甲双胍对NAFLD的潜在预防作用以及磷脂酶A2/溶血磷脂酰胆碱途径在肝细胞脂肪凋亡中的作用。
将36只雄性SD大鼠随机分为三组,每组12只,给予不同饮食和药物处理:第一组:普通饮食;第二组:高脂饮食;第三组:高脂饮食加二甲双胍。10周后,处死大鼠,测量其体重和肝脏重量,检测血清脂质代谢指标、胰岛素抵抗指标以及分泌型磷脂酶A2(sPLA2)、溶血磷脂酰胆碱(LPC)水平等参数。采用定量逆转录-聚合酶链反应(RT-PCR)检测磷脂酶A2 mRNA表达水平。此外,分析肝组织的组织学变化。
与普通饮食组相比,高脂饮食组大鼠肝脏重量(g)(16.92±2.49 vs. 12.16±0.82)、肝指数(0.034±0.004 vs. 0.026±0.002)、血清丙氨酸氨基转移酶(U/L)(45.43±9.73 vs. 29.42±6.73)、甘油三酯(mmol/L)(1.22±0.24 vs. 0.85±0.19)、胆固醇(mmol/L)(2.00±0.37 vs. 1.49±0.33)、脂蛋白(a)(mmol/L)(743.86±32.19 vs. 648.42±78.87)、低密度脂蛋白(mmol/L)(1.31±0.35 vs. 0.65±0.22)、胰岛素(mmol/L)(22.16±5.16 vs. 16.86±5.35)、胰岛素抵抗指数(5.10±1.45 vs. 3.59±0.99)、游离脂肪酸(mEq/L)(0.57±0.10 vs. 0.35±0.07)、sPLA2[µmol/(min·ml)](0.130±0.016 vs. 0.098±0.024)、溶血磷脂酰胆碱(µmol/L)(707.26±92.48 vs. 508.87±96.50)、瘦素(pg/ml)(80.08±17.73 vs. 65.11±14.09)、肝脏甘油三酯(mg/g)(13.57±0.65 vs. 12.03±1.14)、胆固醇(mg/g)(2.19±0.15 vs. 1.94±0.12)(P<0.05)均显著升高。此外,肝脂肪变性程度显著更高,sPLA2 mRNA表达也显著增加。其次,与高脂饮食组相比,早期二甲双胍治疗显著降低了大鼠体重(g)(394.40±33.10 vs. 491.86±26.45)、肝脏重量(g)(13.24±1.16 vs. 16.92±2.49)、血清丙氨酸氨基转移酶(U/L)(30.40±4.50 vs. 45.43±9.73)、甘油三酯(mmol/L)(0.75±0.19 vs. 1.22±0.24)、胆固醇(mmol/L)(1.61±0.38 vs. 2.00±0.37)、胰岛素(mmol/L)(16.96±5.60 vs. 22.16±5.16)、胰岛素抵抗指数(3.75±1.41 vs. 5.10±1.45)、sPLA2[µmol/(min·ml)](0.101±0.009 vs. 0.130±0.016)、溶血磷脂酰胆碱(µmol/L)(549.92±90.78 vs. 707.26±92.48)、肝脏甘油三酯(mg/g)(11.23±1.70 vs. 13.57±0.65)、胆固醇(mg/g)(1.97±0.20 vs. 2.19±0.15)(P<0.05)。此外,二甲双胍使肝脂肪变性程度显著降低,sPLA2 mRNA表达也显著下降。第三,与普通饮食组相比,二甲双胍还可显著增加肝指数(0.034±0.004 vs. 0.026±0.002)和低密度脂蛋白水平(mmol/L)(0.96±0.34 vs. 0.65±0.22)(P<0.05)。然而,对肝脂肪变性和sPLA2表达无影响(P>0.05)。
表明二甲双胍对改善高脂饮食诱导的非酒精性脂肪性肝病大鼠模型的脂质代谢和胰岛素抵抗有显著作用。二甲双胍在非酒精性脂肪性肝病中的肝脏保护机制可能是通过下调分泌型磷脂酶A2 mRNA表达、降低血清分泌型磷脂酶A2、溶血磷脂酰胆碱水平、减轻炎症反应以及保护线粒体功能实现的。