Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States.
Biomacromolecules. 2011 May 9;12(5):1781-94. doi: 10.1021/bm2001507. Epub 2011 Apr 5.
The misfolding and self-assembly of human islet amyloid polypeptide (hIAPP or amylin) into amyloid fibrils is pathologically linked to type II diabetes. The polymorphic nature of both hIAPP oligomers and fibrils has been implicated for the molecular origin of hIAPP toxicity to islet β-cells, but little is known about the polymorphic structure and dynamics of these hIAPP oligomers/fibrils at the atomic level. Here, we model the polymorphism of full length hIAPP(1-37) oligomers based on experimental data from solid-state NMR, mass per length, and electron microscopy using all-atom molecular dynamics simulation with explicit solvent. As an alternative to steric zipper structures mostly presented in the 2-fold symmetrical fibrils, the most striking structural feature of our proposed hIAPP oligomers is the presence of 3-fold symmetry along the fibril growth axis, in which three β-sheet-layers wind around a hydrophobic core with different periodicities. These 3-fold triangular hIAPP structures dramatically differ in the details of the β-layer assembly and core-forming sequence at the cross section, but all display a high structural stability with favorable layer-to-layer interactions. The 3-fold hIAPP structures can also serve as templates to present triple-stranded helical fibrils via peptide elongation, with different widths from 8.7 to 9.9 nm, twists from 2.8° to 11.8°, and pitches from 14.5 to 61.1 nm, in reasonable agreement with available biophysical data. Because similar 3-fold Aβ oligomers are also observed by both NMR experiments and our previous simulations, the 3-fold structure could be a general conformation to a broad range of amyloid oligomers and fibrils. Most importantly, unlike the conventional stacking sandwich model, the proposed wrapping-cord structures can readily accommodate more than three β-layers via a two dimension conformation search by rotating and translating the β-layers to adopt different favorable packings, which can greatly enrich the polymorphism of amyloid oligomers and fibrils.
人胰岛淀粉样多肽(hIAPP 或胰岛淀粉样肽)错误折叠和自组装成淀粉样纤维与 2 型糖尿病在病理学上有关。hIAPP 低聚物和纤维的多态性性质与 hIAPP 对胰岛 β 细胞的毒性的分子起源有关,但对于这些 hIAPP 低聚物/纤维在原子水平上的多态结构和动力学知之甚少。在这里,我们根据固态 NMR、质量与长度比和电子显微镜的实验数据,使用全原子分子动力学模拟和显式溶剂,对全长 hIAPP(1-37)低聚物的多态性进行建模。作为主要存在于 2 倍对称纤维中的空间位阻拉链结构的替代方案,我们提出的 hIAPP 低聚物最显著的结构特征是在纤维生长轴上存在 3 倍对称性,其中三个 β-折叠层围绕着一个具有不同周期性的疏水性核心缠绕。这些 3 倍三角 hIAPP 结构在横截面处的 β 层组装和核心形成序列的细节上有很大的不同,但都表现出很高的结构稳定性和有利的层间相互作用。3 倍 hIAPP 结构也可以作为模板通过肽延伸呈现三股螺旋纤维,宽度从 8.7 到 9.9nm 不等,扭曲度从 2.8°到 11.8°不等,螺距从 14.5 到 61.1nm 不等,与现有生物物理数据合理一致。由于类似的 3 倍 Aβ 低聚物也在 NMR 实验和我们之前的模拟中观察到,因此 3 倍结构可能是广泛的淀粉样低聚物和纤维的一般构象。最重要的是,与传统的堆叠三明治模型不同,所提出的包裹绳结构可以通过旋转和平移β层来采用不同的有利包装,通过二维构象搜索很容易容纳超过三个β层,这可以极大地丰富淀粉样低聚物和纤维的多态性。