Suppr超能文献

纤维预测器:一种快速预测淀粉样纤维结构的计算方法。

Fibpredictor: a computational method for rapid prediction of amyloid fibril structures.

作者信息

Tabatabaei Ghomi Hamed, Topp Elizabeth M, Lill Markus A

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.

Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA.

出版信息

J Mol Model. 2016 Sep;22(9):206. doi: 10.1007/s00894-016-3066-1. Epub 2016 Aug 8.

Abstract

Amyloid fibrils are important in diseases such as Alzheimer's disease and Parkinson's disease, and are also a common instability in peptide and protein drug products. Despite their importance, experimental structures of amyloid fibrils in atomistic detail are rare. To address this limitation, we have developed a novel, rapid computational method to predict amyloid fibril structures (Fibpredictor). The method combines β-sheet model building, β-sheet replication, and symmetry operations with side-chain prediction and statistical scoring functions. When applied to nine amyloid fibrils with experimentally determined structures, the method predicted the correct structures of amyloid fibrils and enriched those among the top-ranked structures. These models can be used as the initial heuristic structures for more complicated computational studies. Fibpredictor is available at http://nanohub.org/resources/fibpredictor .

摘要

淀粉样纤维在阿尔茨海默病和帕金森病等疾病中具有重要意义,并且也是肽和蛋白质药物产品中常见的不稳定性因素。尽管它们很重要,但原子水平详细的淀粉样纤维实验结构却很少见。为了克服这一局限性,我们开发了一种新颖、快速的计算方法来预测淀粉样纤维结构(Fibpredictor)。该方法将β-折叠模型构建、β-折叠复制和对称操作与侧链预测及统计评分函数相结合。当应用于九个具有实验确定结构的淀粉样纤维时,该方法预测出了正确的淀粉样纤维结构,并在排名靠前的结构中富集了这些结构。这些模型可作为更复杂计算研究的初始启发式结构。Fibpredictor可在http://nanohub.org/resources/fibpredictor获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验