Faculty of Design, Department of Communication Design Science, Kyushu University, 4-9-1 Shiobaru, Fukuoka 815-8540, Japan.
J Acoust Soc Am. 2011 Mar;129(3):1554-67. doi: 10.1121/1.3533732.
A voice production model is created in this work by considering essential aerodynamic and acoustic phenomena in human voice production. A precise flow analysis is performed based on a boundary-layer approximation and the viscous-inviscid interaction between the boundary layer and the core flow. This flow analysis can supply information on the separation point of the glottal flow and the thickness of the boundary layer, both of which strongly depend on the glottal configuration and yield an effective prediction of the flow behavior. When the flow analysis is combined with the modified two-mass model of the vocal fold [Pelorson et al. (1994). J. Acoust. Soc. Am. 96, 3416-3431], the resulting acoustic wave travels through the vocal tract and a pressure change develops in the vicinity of the glottis. This change can affect the glottal flow and the motion of the vocal folds, causing source-filter coupling. The property of the acoustic feedback is explicitly expressed in the frequency domain by using an acoustic tube model, allowing a clear interpretation of the coupling. Numerical experiments show that the vocal-tract input impedance and frequency responses representing the source-filter coupling have dominant peaks corresponding to the fourth and fifth formants. Results of time-domain simulations also suggest the importance of these high-frequency peaks in voice production.
这项工作考虑了人类发声过程中的基本气动和声学现象,从而创建了一个语音产生模型。基于边界层近似和边界层与核心流之间的粘性-无粘相互作用,进行了精确的流动分析。该流动分析可以提供有关声门射流分离点和边界层厚度的信息,这两个因素都强烈依赖于声门配置,并能有效地预测流动行为。当将流动分析与改进的声带两质量模型[Pelorson 等人(1994)。J. Acoust. Soc. Am. 96, 3416-3431]结合使用时,产生的声波会穿过声道,并且在声门附近会产生压力变化。这种变化会影响声门射流和声带的运动,从而导致声源滤波器耦合。通过使用声学管模型在频域中明确表示声反馈的特性,从而可以清晰地解释耦合。数值实验表明,代表源滤波器耦合的声道输入阻抗和频率响应具有与第四和第五共振峰相对应的主导峰值。时域模拟的结果也表明了这些高频峰值在语音产生中的重要性。