Suppr超能文献

The specific growth rates of tissues: a review and a re-evaluation.

作者信息

Cowin Stephen C

机构信息

Department of Biomedical Engineering, The City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA.

出版信息

J Biomech Eng. 2011 Apr;133(4):041001. doi: 10.1115/1.4003341.

Abstract

The first objective of this review and re-evaluation is to present a brief history of efforts to mathematically model the growth of tissues. The second objective is to place this historical material in a current perspective where it may be of help in future research. The overall objective is to look backward in order to see ways forward. It is noted that two distinct methods of imaging or modeling the growth of an organism were inspired over 70 years ago by Thompson's (1915, "XXVII Morphology and Mathematics," Trans. - R. Soc. Edinbrgh, 50, pp. 857-895; 1942, On Growth and Form, Cambridge University Press, Cambridge, UK) method of coordinate transformations to study the growth and form of organisms. One is based on the solid mechanics concept of the deformation of an object, and the other is based on the fluid mechanics concept of the velocity field of a fluid. The solid mechanics model is called the distributed continuous growth (DCG) model by Skalak (1981, "Growth as a Finite Displacement Field," Proceedings of the IUTAM Symposium on Finite Elasticity, D. E. Carlson and R. T. Shield, eds., Nijhoff, The Hague, pp. 348-355) and Skalak et al. (1982, "Analytical Description of Growth," J. Theor. Biol., 94, pp. 555-577), and the fluid mechanics model is called the graphical growth velocity field representation (GVFR) by Cowin (2010, "Continuum Kinematical Modeling of Mass Increasing Biological Growth," Int. J. Eng. Sci., 48, pp. 1137-1145). The GVFR is a minimum or simple model based only on the assumption that a velocity field may be used effectively to illustrate experimental results concerning the temporal evolution of the size and shape of the organism that reveals the centers of growth and growth gradients first described by Huxley (1924, "Constant Differential Growth-Ratios and Their Significance," Nature (London), 114, pp. 895-896; 1972, Problems of Relative Growth, 2nd ed., L. MacVeagh, ed., Dover, New York). It is the method with an independent future that some earlier writers considered as an aspect of the DCG model. The development of the DCG hypothesis and the mixture theory models into models for the predicted growth of an organism is taking longer because these models are complicated and the development and refinement of the basic concepts are slower.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验