Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avda. de los Descubrimientos s/n, 41092 Sevilla, Spain.
Lab Chip. 2011 Jun 21;11(12):2023-9. doi: 10.1039/c0lc00731e. Epub 2011 Mar 23.
A new regime of operation of PDMS-based flow-focusing microfluidic devices is presented. We show that monodisperse microbubbles with diameters below one-tenth of the channel width (here w = 50 μm) can be produced in low viscosity liquids thanks to a strong pressure gradient in the entrance region of the channel. In this new regime bubbles are generated at the tip of a long and stable gas ligament whose diameter, which can be varied by tuning appropriately the gas and liquid flow rates, is substantially smaller than the channel width. Through this procedure the volume of the bubbles formed at the tip of the gas ligament can be varied by more than two orders of magnitude. The experimental results for the bubble diameter d(b) as function of the control parameters are accounted for by a scaling theory, which predicts d(b)/w ∝ (μ(g)/μ(l))(1/12)(Q(g)/Q(l))(5/12), where μ(g) and μ(l) indicate, respectively, the gas and liquid viscosities and Q(g) and Q(l) are the gas and liquid flow rates. As a particularly important application of our results we produce monodisperse bubbles with the appropriate diameter for therapeutic applications (d(b) ≃ 5 μm) and a production rate exceeding 10(5) Hz.
提出了一种基于聚二甲基硅氧烷的流动聚焦微流控器件的新操作模式。我们表明,在低粘度液体中,可以在通道入口区域产生直径小于通道宽度十分之一(这里 w = 50 μm)的单分散微泡。在这种新的操作模式下,由于通道入口处的强压力梯度,在长而稳定的气丝尖端会产生气泡。通过适当调整气、液流量,可以改变气丝的直径,其直径大大小于通道宽度。通过这种方法,可以将在气丝尖端形成的气泡体积变化两个数量级以上。实验结果表明,气泡直径 d(b)与控制参数之间的关系可以用一个标度理论来解释,该理论预测 d(b)/w∝(μ(g)/μ(l))(1/12)(Q(g)/Q(l))(5/12),其中μ(g)和μ(l)分别表示气体和液体的粘度,Q(g)和 Q(l)是气体和液体的流量。作为我们研究结果的一个特别重要的应用,我们产生了具有适当治疗应用直径(d(b)≃5 μm)和超过 10(5) Hz 的生产速率的单分散气泡。