Faculty of Engineering, Research Group on Control and Instrumentation, Universidad Tecnologica de Pereira, Pereira, Colombia.
Adv Exp Med Biol. 2011;696:201-9. doi: 10.1007/978-1-4419-7046-6_20.
A novel method for hand movement pattern recognition from electromyography (EMG) biological signals is proposed. These signals are recorded by a three-channel data acquisition system using surface electrodes placed over the forearm, and then processed to recognize five hand movements: opening, closing, supination, flexion, and extension. Such method combines the Hilbert-Huang analysis with a fuzzy clustering classifier. A set of metrics, calculated from the time contour of the Hilbert Spectrum, is used to compute a discriminating three-dimensional feature space. The classification task in this feature-space is accomplished by a two-stage procedure where training cases are initially clustered with a fuzzy algorithm, and test cases are then classified applying a nearest-prototype rule. Empirical analysis of the proposed method reveals an average accuracy rate of 96% in the recognition of surface EMG signals.
提出了一种从肌电图(EMG)生物信号中识别手部运动模式的新方法。这些信号由一个三通道数据采集系统记录,使用放置在前臂上的表面电极,然后进行处理以识别五个手部运动:张开、闭合、旋前、弯曲和伸展。该方法将希尔伯特-黄分析与模糊聚类分类器相结合。从希尔伯特谱的时间轮廓中计算出一组度量值,用于计算一个具有判别力的三维特征空间。在这个特征空间中的分类任务是通过一个两阶段的过程来完成的,其中训练样本首先用模糊算法聚类,然后应用最近原型规则对测试样本进行分类。对所提出的方法的实证分析表明,在识别表面 EMG 信号方面的平均准确率为 96%。