Suppr超能文献

基于希尔伯特谱和模糊聚类的表面肌电生物信号模式识别。

Pattern recognition of surface EMG biological signals by means of Hilbert spectrum and fuzzy clustering.

机构信息

Faculty of Engineering, Research Group on Control and Instrumentation, Universidad Tecnologica de Pereira, Pereira, Colombia.

出版信息

Adv Exp Med Biol. 2011;696:201-9. doi: 10.1007/978-1-4419-7046-6_20.

Abstract

A novel method for hand movement pattern recognition from electromyography (EMG) biological signals is proposed. These signals are recorded by a three-channel data acquisition system using surface electrodes placed over the forearm, and then processed to recognize five hand movements: opening, closing, supination, flexion, and extension. Such method combines the Hilbert-Huang analysis with a fuzzy clustering classifier. A set of metrics, calculated from the time contour of the Hilbert Spectrum, is used to compute a discriminating three-dimensional feature space. The classification task in this feature-space is accomplished by a two-stage procedure where training cases are initially clustered with a fuzzy algorithm, and test cases are then classified applying a nearest-prototype rule. Empirical analysis of the proposed method reveals an average accuracy rate of 96% in the recognition of surface EMG signals.

摘要

提出了一种从肌电图(EMG)生物信号中识别手部运动模式的新方法。这些信号由一个三通道数据采集系统记录,使用放置在前臂上的表面电极,然后进行处理以识别五个手部运动:张开、闭合、旋前、弯曲和伸展。该方法将希尔伯特-黄分析与模糊聚类分类器相结合。从希尔伯特谱的时间轮廓中计算出一组度量值,用于计算一个具有判别力的三维特征空间。在这个特征空间中的分类任务是通过一个两阶段的过程来完成的,其中训练样本首先用模糊算法聚类,然后应用最近原型规则对测试样本进行分类。对所提出的方法的实证分析表明,在识别表面 EMG 信号方面的平均准确率为 96%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验