Suppr超能文献

使用最优特征-通道组合对 10 种运动的前臂肌电信号进行分类。

Classification of forearm EMG signals for 10 motions using optimum feature-channel combinations.

机构信息

iVision Lab, Electrical Engineering Department, Institute of Space Technology, Islamabad, Pakistan.

Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.

出版信息

Comput Methods Biomech Biomed Engin. 2021 Jul;24(9):945-955. doi: 10.1080/10255842.2020.1861256. Epub 2020 Dec 27.

Abstract

Electromyography (EMG) is the study of electrical activity in the muscles. We classify EMG signals from surface electrodes (channels) using Artificial Neural Network (ANN). We evaluate classification performance of 10 different hand motions using several feature-channel combinations with wrapper method. Highest classification accuracy of 98.7% is achieved with each feature-channel combination. Compared to previous studies, we achieve the highest accuracy for 10 classes with lower number of feature-channel combination. We reduce ANN complexity without compromising the classification accuracy for deployment in low-end hardware with limited computational power along with improving the design of a low-cost hardware for EMG signal acquisition.

摘要

肌电图(EMG)是对肌肉电活动的研究。我们使用人工神经网络(ANN)对来自表面电极(通道)的 EMG 信号进行分类。我们使用包装方法,对 10 种不同手部运动的几种特征-通道组合进行分类性能评估。每种特征-通道组合的最高分类准确率达到 98.7%。与之前的研究相比,我们使用较少的特征-通道组合实现了 10 类的最高准确率。我们在不影响分类准确性的情况下降低了 ANN 的复杂性,以便在计算能力有限的低端硬件上部署,同时改进了低成本 EMG 信号采集硬件的设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验