Suppr超能文献

石松线粒体编码区的极端 RNA 编辑和重复序列中的丰富微卫星:早期维管束植物 mtDNA 重组的根源。

Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes.

机构信息

Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany.

出版信息

Genome Biol Evol. 2011;3:344-58. doi: 10.1093/gbe/evr027. Epub 2011 Mar 23.

Abstract

Using an independent fosmid cloning approach and comprehensive transcriptome analysis to complement data from the Selaginella moellendorffii genome project, we determined the complete mitochondrial genome structure of this spikemoss. Numerous recombination events mediated mainly via long sequence repeats extending up to 7 kbp result in a complex mtDNA network structure. Peculiar features associated with the repeat sequences are more than 80 different microsatellite sites (predominantly trinucleotide motifs). The S. moellendorffii mtDNA encodes a plant-typical core set of a twin-arginine translocase (tatC), 17 respiratory chain subunits, and 2 rRNAs but lacks atp4 and any tRNA genes. As a further novelty among plant chondromes, the nad4L gene is encoded within an intron of the nad1 gene. A total of 37 introns occupying the 20 mitochondrial genes (four of which are disrupted into trans-splicing arrangements including two novel instances of trans-splicing introns) make the S. moellendorffii chondrome the intron-richest and gene-poorest plant mtDNA known. Our parallel transcriptome analyses demonstrates functional splicing of all 37 introns and reveals a new record amount of plant organelle RNA editing with a total of 2,139 sites in mRNAs and 13 sites in the two rRNAs, all of which are exclusively of the C-to-U type.

摘要

采用独立的 fosmid 克隆方法和全面的转录组分析,补充卷柏基因组项目的数据,我们确定了这种石松的完整线粒体基因组结构。大量的重组事件主要通过长达 7 kbp 的长序列重复介导,导致复杂的 mtDNA 网络结构。与重复序列相关的特殊特征是 80 多个不同的微卫星位点(主要是三核苷酸基序)。石松 mtDNA 编码植物典型的双精氨酸转运酶 (tatC)、17 个呼吸链亚基和 2 个 rRNA,但缺乏 atp4 和任何 tRNA 基因。作为植物软骨体中的另一个新特征,nad4L 基因编码在 nad1 基因的内含子中。总共 37 个内含子占据 20 个线粒体基因(其中 4 个被破坏成转位拼接排列,包括两个新的转位拼接内含子),使石松软骨体成为已知内含子最丰富、基因最少的植物 mtDNA。我们的平行转录组分析表明所有 37 个内含子都具有功能性拼接,并揭示了一种新的植物细胞器 RNA 编辑记录,在 mRNA 中共有 2139 个位点,在两个 rRNA 中共有 13 个位点,所有这些位点均为 C 到 U 型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5654404/42ad381a9da5/gbeevr027f01_3c.jpg

相似文献

5
A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii.
Nucleic Acids Res. 2009 Aug;37(15):5093-104. doi: 10.1093/nar/gkp532. Epub 2009 Jun 23.
6
Unparalleled GC content in the plastid DNA of Selaginella.
Plant Mol Biol. 2009 Dec;71(6):627-39. doi: 10.1007/s11103-009-9545-3. Epub 2009 Sep 23.
8
Assembly and comparative analysis of the complete mitochondrial genome sequence of Sophora japonica 'JinhuaiJ2'.
PLoS One. 2018 Aug 16;13(8):e0202485. doi: 10.1371/journal.pone.0202485. eCollection 2018.
9
RNA editing in mitochondrial trans-introns is required for splicing.
PLoS One. 2012;7(12):e52644. doi: 10.1371/journal.pone.0052644. Epub 2012 Dec 20.

引用本文的文献

1
The first complete mitochondrial genome assembly and comparative analysis of the fern Blechnaceae family: .
Front Plant Sci. 2025 Mar 20;16:1534171. doi: 10.3389/fpls.2025.1534171. eCollection 2025.
3
Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications.
Plant Commun. 2025 Feb 10;6(2):101203. doi: 10.1016/j.xplc.2024.101203. Epub 2024 Dec 5.
4
Mitochondrial RNA maturation.
RNA Biol. 2024 Jan;21(1):28-39. doi: 10.1080/15476286.2024.2414157. Epub 2024 Oct 10.
5
Comprehensive analysis of the mitogenome reveals abundant tRNA genes and -spliced introns in Lycopodiaceae species.
Front Plant Sci. 2024 Aug 20;15:1446015. doi: 10.3389/fpls.2024.1446015. eCollection 2024.
6
Organellar-genome analyses from the lycophyte genus L. show one of the highest frequencies of RNA editing in land plants.
Front Plant Sci. 2024 Mar 12;15:1298302. doi: 10.3389/fpls.2024.1298302. eCollection 2024.
7
Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida.
Nat Commun. 2024 Feb 20;15(1):1548. doi: 10.1038/s41467-024-45813-y.
8
Linear DNA-driven recombination in mammalian mitochondria.
Nucleic Acids Res. 2024 Apr 12;52(6):3088-3105. doi: 10.1093/nar/gkae040.
10
Beyond a PPR-RNA recognition code: Many aspects matter for the multi-targeting properties of RNA editing factor PPR56.
PLoS Genet. 2023 Aug 21;19(8):e1010733. doi: 10.1371/journal.pgen.1010733. eCollection 2023 Aug.

本文引用的文献

2
When you can't trust the DNA: RNA editing changes transcript sequences.
Cell Mol Life Sci. 2011 Feb;68(4):567-86. doi: 10.1007/s00018-010-0538-9. Epub 2010 Oct 12.
3
DYW-type PPR proteins in a heterolobosean protist: plant RNA editing factors involved in an ancient horizontal gene transfer?
FEBS Lett. 2010 Oct 22;584(20):4287-91. doi: 10.1016/j.febslet.2010.09.041. Epub 2010 Oct 2.
6
Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria.
Mol Biol Evol. 2010 Oct;27(10):2216-9. doi: 10.1093/molbev/msq112. Epub 2010 May 3.
7
The moss Physcomitrella patens, a model plant for the study of RNA editing in plant organelles.
Plant Signal Behav. 2010 Jun;5(6):727-9. doi: 10.4161/psb.5.6.11664. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验