Department of Life Science, Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
Bioinformatics. 2011 May 15;27(10):1436-7. doi: 10.1093/bioinformatics/btr148. Epub 2011 Mar 23.
High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species.
miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.
高通量深度测序技术产生了数量空前的表达短序列读段,这不仅带来了机会,也对新 microRNA 的预测提出了挑战。为了验证候选 microRNA 的存在,我们必须证明这些短序列可以从候选前 microRNA 中加工而来。然而,使用现有的实验技术来验证这些是费力且耗时的。因此,在这里,我们描述了一种新的方法 miRD,它使用基于支持向量机(SVM)和提升方法的两种特征选择策略构建。它是一种高效的新的前 microRNA 预测工具,在不同物种中的准确率高达 94.0%。
miRD 是用 PHP/PERL+MySQL+R 实现的,可以在 http://mcg.ustc.edu.cn/rpg/mird/mird.php 上免费访问。