Suppr超能文献

临床和影像学特征的协同组合可预测肺部感染的异常影像学模式。

Synergistic combination of clinical and imaging features predicts abnormal imaging patterns of pulmonary infections.

机构信息

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

出版信息

Comput Biol Med. 2013 Sep;43(9):1241-51. doi: 10.1016/j.compbiomed.2013.06.008. Epub 2013 Jun 20.

Abstract

We designed and tested a novel hybrid statistical model that accepts radiologic image features and clinical variables, and integrates this information in order to automatically predict abnormalities in chest computed-tomography (CT) scans and identify potentially important infectious disease biomarkers. In 200 patients, 160 with various pulmonary infections and 40 healthy controls, we extracted 34 clinical variables from laboratory tests and 25 textural features from CT images. From the CT scans, pleural effusion (PE), linear opacity (or thickening) (LT), tree-in-bud (TIB), pulmonary nodules, ground glass opacity (GGO), and consolidation abnormality patterns were analyzed and predicted through clinical, textural (imaging), or combined attributes. The presence and severity of each abnormality pattern was validated by visual analysis of the CT scans. The proposed biomarker identification system included two important steps: (i) a coarse identification of an abnormal imaging pattern by adaptively selected features (AmRMR), and (ii) a fine selection of the most important features from the previous step, and assigning them as biomarkers, depending on the prediction accuracy. Selected biomarkers were used to classify normal and abnormal patterns by using a boosted decision tree (BDT) classifier. For all abnormal imaging patterns, an average prediction accuracy of 76.15% was obtained. Experimental results demonstrated that our proposed biomarker identification approach is promising and may advance the data processing in clinical pulmonary infection research and diagnostic techniques.

摘要

我们设计并测试了一种新颖的混合统计模型,该模型接受放射影像学特征和临床变量,并整合这些信息,以便自动预测胸部计算机断层扫描(CT)扫描中的异常,并识别潜在的重要传染病生物标志物。在 200 名患者中,有 160 名患有各种肺部感染,40 名健康对照者,我们从实验室检查中提取了 34 个临床变量,并从 CT 图像中提取了 25 个纹理特征。从 CT 扫描中,通过临床、纹理(成像)或联合属性分析和预测胸腔积液(PE)、线性不透明度(或增厚)(LT)、树芽征(TIB)、肺结节、磨玻璃密度(GGO)和实变异常模式。通过对 CT 扫描的视觉分析验证了每种异常模式的存在和严重程度。所提出的生物标志物识别系统包括两个重要步骤:(i)通过自适应选择的特征(AmRMR)对异常成像模式进行粗略识别,以及(ii)从前一步骤中选择最重要的特征,并根据预测精度将其指定为生物标志物。选择的生物标志物用于通过增强决策树(BDT)分类器对正常和异常模式进行分类。对于所有异常的成像模式,平均预测准确率为 76.15%。实验结果表明,我们提出的生物标志物识别方法很有前途,可以推进临床肺部感染研究和诊断技术的数据处理。

相似文献

本文引用的文献

3
Detecting novel associations in large data sets.在大型数据集 中检测新的关联。
Science. 2011 Dec 16;334(6062):1518-24. doi: 10.1126/science.1205438.
5
Subcellular localization prediction through boosting association rules.基于提升关联规则的亚细胞定位预测。
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):609-18. doi: 10.1109/TCBB.2011.131. Epub 2011 Sep 27.
7
Computer-assisted detection of infectious lung diseases: a review.计算机辅助检测传染性肺病:综述。
Comput Med Imaging Graph. 2012 Jan;36(1):72-84. doi: 10.1016/j.compmedimag.2011.06.002. Epub 2011 Jul 1.
8
Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.通过提升算法和 SVM 精准预测新型前 microRNAs。
Bioinformatics. 2011 May 15;27(10):1436-7. doi: 10.1093/bioinformatics/btr148. Epub 2011 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验