Suppr超能文献

量化全基因组关联研究中相对风险的低估。

Quantifying the underestimation of relative risks from genome-wide association studies.

机构信息

Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.

出版信息

PLoS Genet. 2011 Mar;7(3):e1001337. doi: 10.1371/journal.pgen.1001337. Epub 2011 Mar 17.

Abstract

Genome-wide association studies (GWAS) have identified hundreds of associated loci across many common diseases. Most risk variants identified by GWAS will merely be tags for as-yet-unknown causal variants. It is therefore possible that identification of the causal variant, by fine mapping, will identify alleles with larger effects on genetic risk than those currently estimated from GWAS replication studies. We show that under plausible assumptions, whilst the majority of the per-allele relative risks (RR) estimated from GWAS data will be close to the true risk at the causal variant, some could be considerable underestimates. For example, for an estimated RR in the range 1.2-1.3, there is approximately a 38% chance that it exceeds 1.4 and a 10% chance that it is over 2. We show how these probabilities can vary depending on the true effects associated with low-frequency variants and on the minor allele frequency (MAF) of the most associated SNP. We investigate the consequences of the underestimation of effect sizes for predictions of an individual's disease risk and interpret our results for the design of fine mapping experiments. Although these effects mean that the amount of heritability explained by known GWAS loci is expected to be larger than current projections, this increase is likely to explain a relatively small amount of the so-called "missing" heritability.

摘要

全基因组关联研究(GWAS)已经在许多常见疾病中确定了数百个相关的基因座。GWAS 识别的大多数风险变体只是尚未确定的因果变体的标记。因此,通过精细映射来确定因果变体,可能会识别出对遗传风险影响大于目前从 GWAS 复制研究中估计的等位基因。我们表明,在合理的假设下,虽然从 GWAS 数据中估计的每个等位基因的相对风险(RR)大多数都接近因果变体的真实风险,但有些可能是相当低估的。例如,对于估计的 RR 在 1.2-1.3 范围内,大约有 38%的可能性超过 1.4,10%的可能性超过 2。我们展示了这些概率如何根据与低频变体相关的真实效应以及最相关 SNP 的次要等位基因频率(MAF)而变化。我们研究了低估效应大小对个体疾病风险预测的后果,并为精细映射实验的设计解释了我们的结果。尽管这些影响意味着已知 GWAS 基因座解释的遗传率预计会大于当前预测,但这种增加很可能只解释了所谓的“缺失”遗传率的一小部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7041/3060077/d8f60181ea32/pgen.1001337.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验