Suppr超能文献

基于凸规划的 LS-SVM 多核学习算法设计。

Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

机构信息

School of Mathematics and Computational Science, China University of Petroleum, Dongying 257061, China.

出版信息

Neural Netw. 2011 Jun;24(5):476-83. doi: 10.1016/j.neunet.2011.03.009. Epub 2011 Mar 12.

Abstract

As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed.

摘要

作为一种基于内核的方法,最小二乘支持向量机(LS-SVM)的性能取决于内核以及正则化参数的选择(Duan、Keerthi 和 Poo,2003)。交叉验证在选择单个内核和正则化参数方面非常有效;然而,它的计算成本很高,并且不灵活,无法处理多个内核。在本文中,我们通过将其表述为半定规划(SDP)来解决 LS-SVM 的多核学习问题。此外,我们表明可以在统一的框架内优化正则化参数与内核,从而实现模型选择的自动化过程。进行了广泛的实验验证和分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验