Suppr超能文献

一种基于验证的正则化常数学习的凸方法。

A convex approach to validation-based learning of the regularization constant.

作者信息

Pelckmans K, Suykens J A K, De Moor B

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):917-20. doi: 10.1109/TNN.2007.891187.

Abstract

This letter investigates a tight convex relaxation to the problem of tuning the regularization constant with respect to a validation based criterion. A number of algorithms is covered including ridge regression, regularization networks, smoothing splines, and least squares support vector machines (LS-SVMs) for regression. This convex approach allows the application of reliable and efficient tools, thereby improving computational cost and automatization of the learning method. It is shown that all solutions of the relaxation allow an interpretation in terms of a solution to a weighted LS-SVM.

摘要

本文研究了一种针对基于验证准则调整正则化常数问题的紧密凸松弛方法。涵盖了多种算法,包括岭回归、正则化网络、平滑样条以及用于回归的最小二乘支持向量机(LS - SVM)。这种凸方法允许应用可靠且高效的工具,从而降低计算成本并提高学习方法的自动化程度。结果表明,松弛问题的所有解都可以根据加权LS - SVM的解进行解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验