Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
Brain Res. 2011 May 25;1392:1-7. doi: 10.1016/j.brainres.2011.03.051. Epub 2011 Apr 12.
The N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) are ionotropic glutamate receptors responsible for excitatory neurotransmission in the brain. These excitatory synapses are found on dendritic spines, with the abundance of receptors concentrated at the postsynaptic density (PSD). We utilized two genetic mouse models, the serine racemase knockout (SR-/-) and the glycine transporter subtype 1 heterozygote mutant (GlyT1+/-), to determine how constitutive NMDAR hypo- and hyperfunction, respectively, affect the glutamate receptor composition of the PSD in the hippocampus and prefrontal cortex (PFC). Using cellular fractionation, we found that SR-/- mice had elevated protein levels of NR1 and NR2A NMDAR subunits specifically in the PSD-enriched fraction from the hippocampus, but not from the PFC. There were no changes in the amounts of AMPAR subunits (GluR1, GluR2), or PSD protein of 95 kDa (PSD95) in either brain region. GlyT1+/- mice also had elevated protein expression of NR1 and NR2A subunits in the PSD, as well as an increase in total protein. Moreover, GlyT1+/- mice had elevated amounts of GluR1 and GluR2 in the PSD, and higher total amounts of GluR1. Similar to SR-/- mice, there were no protein changes observed in the PFC. These findings illustrate the complexity of synaptic adaptation to altered NMDAR function.
N-甲基-D-天冬氨酸受体(NMDAR)和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)是负责大脑中兴奋性神经递质传递的离子型谷氨酸受体。这些兴奋性突触位于树突棘上,受体的丰富度集中在后突触密度(PSD)。我们利用两种基因敲除小鼠模型,即丝氨酸消旋酶敲除(SR-/-)和甘氨酸转运体亚型 1 杂合子突变体(GlyT1+/-),分别确定组成性 NMDAR 功能低下和过度活跃如何影响海马体和前额叶皮层(PFC)中 PSD 的谷氨酸受体组成。通过细胞分离,我们发现 SR-/- 小鼠中海马体 PSD 丰富部分的 NR1 和 NR2A NMDAR 亚基的蛋白水平升高,但 PFC 中没有变化。两种脑区的 AMPAR 亚基(GluR1、GluR2)或 95kDa 突触后密度蛋白(PSD95)的含量均无变化。GlyT1+/- 小鼠的 PSD 中也有 NR1 和 NR2A 亚基的蛋白表达升高,总蛋白量增加。此外,GlyT1+/- 小鼠的 PSD 中 GluR1 和 GluR2 的含量增加,GluR1 的总含量也增加。与 SR-/- 小鼠相似,PFC 中未观察到蛋白质变化。这些发现说明了突触对 NMDAR 功能改变的适应性的复杂性。